Post

Vector Identities

Introduction

In this post, we look at identities built from vector operators. These operators behave both as vectors and as differential operators, so that the usual rules of taking the derivative of, say, a product must be observed. In particular, we will use the Einstein summation convention in the proof.

Basics

Recall that

ab=aibi,a×b=ϵijkaibjek,=eixi,(differential operator)a=aixi,(divergence of a)×a=ϵijkajxiek,(curl of a)ϕ=ϕxiei,(gradient of a)ϵijkϵimn=δjmδknδjnδkm.

Identity 1.

(×a)=0

Proof:

(×a)=xi(×a)=xi(ϵijkakxj)=ϵijk2akxixj=ϵjik2akxjxi       relabel indices i.e. ij,ji=ϵjik2akxixj       swap order of differentiation=ϵjik2akxixj=0       swap indices in permutation

Identity 2.

×(ϕ)=0

Proof:

×(ϕ)=×ϕxmem=ϵijkxi(ϕxj)ek=ϵijk2ϕxixjek=ϵjik2ϕxjxiek       relabel indices i.e. ij,ji=ϵjik2ϕxixjek       swap order of differentiation=ϵijk2ϕxixjek=0       swap indices in permutation

Identity 3.

(ϕa)=(aϕ)+ϕ(a)

Proof:

(ϕa)=(ϕa)ixi=(ϕai)xi=aiϕxi+ϕaixi       product rule of differentiation=ai(ϕ)i+ϕ(a)=(aϕ)+ϕ(a)

Identity 4.

×(ϕa)=ϕ(×a)+a×ϕ

Proof:

×(ϕa)=ϵijk(ϕa)jxiek=ϵijk(ϕaj)xiek=ϵijk(ϕxiaj+ajxiϕ)ek        product rule of differentiation=ϵijkajϕxiek+ϵijkϕajxiek=(ϕ×a)+(×a)ϕ

Identity 5.

×(a×b)=a(b)+[b]a+[a]bb(a)

Proof:

×(a×b)=×(ϵijkaibjek)=×(dkek)       where dk=ϵijkaibj=ϵlmndmxlen=ϵlmnϵijk(aibj)xlen=(δniδljδnjδli)(aibj)xlen=(δniδlj)(aibj)xlen(δnjδli)(aibj)xlen=(anbl)xlen(albn)xlen=(anblxl+blanxl)en(albnxl+bnalxl)en=a(b)+[b]a[a]bb(a)

Identity 6.

×(×a)=(a)2a

Proof:

×(×a)=×(ϵijkajxiek)=ϵlmndmxlen       where dk=ϵijkajxi=ϵlmnϵijm2ajxlxien=(δniδljδnjδli)2ajxlxien=(δniδlj)2ajxlxien(δnjδli)2ajxlxien=2alxlxnen2anxlxlen=(a)2a

Identity 7.

(u)u=(12|u|2)+(×u)×u

Proof:

(×u)×u=(ϵijkujxiek)×u=(dkek)×u         where dk=ϵijkujxi=ϵlmndlumen=ϵlmnϵlijujxien=(δmiδnjδmjδni)umujxien=uiujxiejujujxiei=[uixi](ujej)ujujxiei=[u]u(12|u|2)

The notation [a] is called the scalar differential operator

[a][axx+ayy+azz].
  • Notice that the components of a don’t get touched by the differentiation.
  • Applied to a scalar field, results in a scalar field.
  • Applied to a vector field, results in a vector field.
  • The material derivative involves this operation as the acceleration due to position change.
This post is licensed under CC BY 4.0 by the author.