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Abstract. Scattering theory, especially in quantummechanics and wave prop-
agation, provides profound insights into the interactions within various phys-
ical systems. In this paper, we focus on the mathematical characterization
and asymptotic analysis of the scattering matrix under mixed and Neumann
boundary conditions within the context of one-dimensional compactly sup-
ported potential ODEs.

1. Introduction and preliminaries

We study the asymptotic behavior of the scattering matrix, S(λ), for a one-
dimensional second-order non-linear ordinary differential equation under mixed
and Neumann boundary conditions. Assuming the potential q has compact
support, we derive the complete asymptotic expansion of S(λ) for the mixed-
boundary condition with ν ̸= 0 and the leading term for the Neumann boundary
condition (ν = 0). Our analysis reveals distinct instability in the behavior of

the scattering matrix: under Neumann condition, S(λ)
λ→0→ 1, contrasting with a

convergence to −1 under other conditions.
The paper is structured as follows: In Sec. 2, we formally present our settings

and few basic definitions. In Sec. 3, we derive the complete asymptotic expansion
of S-matrix under mixed-boundary condition with ν ̸= 0 and the leading term in
the asymptotic expansion under Nuemann boundary condition. Sec. 4 focuses
on the justification of such expansion and Appendix A gives a brief review of
Picard-Lindelöf Theorem.

Notations. Let Ω ⊆ C be a non-empty open subset of the set of complex
numbers C. For any complex number z = x+iy, its complex conjugate is denoted
by z∗, where z∗ = x− iy. The set of real numbers is denoted by R and the set of
positive real numbers is denoted by R>0. Additionally, we use N := {1, 2, 3, . . .}
to denote the set of natural numbers.

2. Abstract problem formulation

Definition 2.1 (Continously differentiable functions). Let k ∈ {0} ∪N. A func-
tion f : Ω → C is k times continuously differentiable if all partial derivatives of
f up to and including order k exist and are continuous on Ω.

We use the following notations for the standard function classes:

Key words and phrases. Asymptotic analysis, ordinary differential equations (ODEs), scat-
tering theory.
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• C0(Ω) = C(Ω) is the set of continuous functions on Ω;
• Ck(Ω) := {f : Ω → C | f is k times continuously differentiable};
• C∞(Ω) :=

⋂∞
k=0C

k(Ω) is the set of infinitely differentiable functions (or
smooth functions) on Ω.

Definition 2.2 (Support of continuous functions). Let f ∈ C(Ω). The support
of f is the closure of the set {x ∈ Ω, f(x) ̸= 0} relative to Ω:

supp(f) := Ω ∩ {x ∈ Ω | f(x) ̸= 0}.

Definition 2.3 (Test functions). D(Ω) ⊆ C∞(Ω) is the set of smooth functions
with compact support:

D(Ω) := {φ ∈ C∞(Ω) : supp(φ) is compact}.
We often call this set the class of test functions.

The standard types of boundary conditions for equations defined on R>0 with
dependent variable u(x) that we will consider are

• Dirichlet boundary condition: u(0) = 0;
• Neumann boundary condition: u′(0) = 0;
• Mixed-boundary condition: u′(0) = νu(0) for ν ∈ R.

Remark 2.4. Note that both Dirichlet boundary condition and Neumann bound-
ary condition are special cases of mixed-boundary condition, where the former

can be viewed as u(0) = u′(0)
ν

with ν → ∞ and the latter can be viewed as the
case when ν = 0.

Boundary-value problem (BVP) with mixed-boundary data. Consider
the following one-dimensional BVP: find u(x) ∈ C2(R+) such that

u′′(x) + λ2(q(x) + 1)︸ ︷︷ ︸
=:Q(x)

u(x) = 0,

u′(0) = νu(0),

(2.1)

where ν ∈ R, λ > 0, q ∈ D(R), q ≥ 0, and supp(q) ⊆ [0, R] for some R > 0.
Clearly, we have Q(x) = λ2 for x > R.

Proposition 2.5. There exists a unique solution η ∈ C2(R+) to the BVP (2.1)
that additionally satisfies

η(x) = eiλx + Se−iλx, x > R, (2.2)

for some S = Sλ ∈ C with |S| = 1.

Remark 2.6. S is often called the scattering matrix or S-matrix. One well-
known property of the scattering matrix is that it is unitary, namely, SS∗ = 1.
In our one-dimensional case, S is a simply a complex scalar of modulus one.

Proof. We first prove this proposition for ν = 0. By the global version of the
Picard-Lindelöf theorem A.4, there exists a unique solution y ∈ C2([0, K]) for
any K ∈ R with the boundary-values y′(0) = 0 and y(0) = 1. To show η in (2.2)
exists and is unique, let us consider η = My for some M ∈ C we will choose
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appropriately later. Observe that ∀x ∈ R+, η(x) satisfies η′′(x) + Q(x)η(x) = 0
and η′(0) = My′(0) = 0. Thus, η is also a solution to the BVP (2.1) with ν = 0.
For x > R, we have

y′′(x) + λ2y(x) = 0 =⇒ y(x) = Aeiλx +Be−iλx,

where A,B ∈ C depend on λ. We claim that A ̸= 0. Suppose, for the sake of
contradiction that, A = 0. Then, by construction,

y(x) = Be−iλx, x > R (2.3)

satisfies 
y′′(x) +Q(x)y(x) = 0,

y′(0) = 0,

y(0) = 1.

Observe that for a real constant T > R, we obtain that

0 =

∫ T

0

(y′′(x) +Q(x)y(x)) y∗(x)dx

=

∫ T

0

y(x)(y′′
∗
(x) +Q(x)y∗(x))dx+ [y′(x)y∗(x)− y(x)y′

∗
(x)]T0

= y′(T )y(T )∗ − y(T )y′(T )
∗

= −Bλie−iλTB∗eiλT −Be−iλTB∗λeiλT

= −2iλ|B|2 λ>0
=⇒ B = 0,

where the second equality is by using integration by parts twice. Thus, (2.3)
becomes y(x) = 0 for x > R. By the uniqueness of solution y, we have y(x) = 0
for x > 0 which contradicts the fact that y(0) = 1. Now, if we choose M = 1

A
,

then

η(x) = eiλx +
B

A
e−iλx, x > R

where Sλ := B(λ)
A(λ)

. It remains to show that SS∗ = 1. We use the same technique

here. Observe that for a real constant T > R, we obtain that

0 =

∫ T

0

(y′′(x) +Q(x)y(x)) y∗(x)dx

=

∫ T

0

y(x)(y′′
∗
(x) +Q(x)y∗(x))dx+ [y′(x)y∗(x)− y(x)y′

∗
(x)]T0

= y′(T )y(T )∗ − y(T )y′(T )
∗

= iλ
(
1 + Sλe

2iλT − Sλe
−2iλT − |Sλ|2

)
+ iλ

(
1 + Sλe

−2iλT − Sλe
2iλT − |Sλ|2

)
= 2iλ(1− |Sλ|2)

λ>0
=⇒ |Sλ| = 1,

which completes the proof for the case where ν = 0. Let us now consider the
case for ν ̸= 0. Again by the global version of the Picard-Lindelöf theorem A.4,
there exists a unique solution y ∈ C2([0, K]) for any K ∈ R but this time we
use the boundary-values y′(0) = 1 and y(0) = ν−1. Consider η = My for some
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M ∈ C we will choose appropriately later. Observe that ∀x ∈ R+, η(x) satisfies
η′′(x) + Q(x)η(x) = 0 and η′(0) = My′(0) = M = νη(0). Thus, η is also a
solution to the BVP (2.1) with ν ̸= 0. Since ν ∈ R, one can observe that

[y′(x)y∗(x)− y(x)y′
∗
(x)]T0 = y′(T )y(T )∗ − y(T )y′(T )

∗
+ y(0)y′(0)

∗ − y′(0)y(0)∗

= y′(T )y(T )∗ − y(T )y′(T )
∗
+

1∗

ν
− 1

ν∗

= y′(T )y(T )∗ − y(T )y′(T )
∗
.

Given this observation, the remainder of the proof proceeds identically to the
case when ν = 0. □

3. Asymptotic expansion of S-matrix under mixed-boundary
condition

In this section, we derive the full asymptotic expansion of the scattering matrix
S under the mixed-boundary condition. We first consider the case when ν ̸= 0
and later we will consider the Neumann case (ν = 0) separately.

Suppose that η given by (2.2) admits an asymptotic expansion in terms of λ
for x > 0 of the form 1

ηλ(x) =
∞∑
n=0

ηn(x)λ
n, x > 0. (3.1)

Suppose that the scattering matrix S given by (2.2) also admits an asymptotic
expansion in terms of λ of the form

Sλ =
∞∑
n=0

Snλ
n. (3.2)

For convenience, we omit the subscript λ when the parameter of our asymptotic
expansion is unambiguous.

Due to (3.2) and the Taylor expansion of the exponential function, it follows
immediately that for x > R

η(x) = eiλx + Se−iλx

=
∞∑
n=0

(iλx)n

n!
+

∞∑
n=0

(
n∑

k=0

(−ix)k

k!
Sn−k

)
λn

=
∞∑
n=0

an(x)λ
n,

where an(x) := (ix)n

n!
+
∑n

k=0
(−ix)k

k!
Sn−k. Thus, we obtain another asymptotic

expansion of η in terms of λ for x > R of the form

η(x) =
∞∑
n=0

an(x)λ
n. (3.3)

Our goal now is to find formulas for {Sn}∞n=1.

1See section 4 for details.
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3.1. Asymptotic expansion of S-matrix under mixed-boundary condi-
tion with ν ̸= 0. To begin with, substituting (3.1) into (2.1), we obtain the
following equations for n ∈ {0, 1}{

η′′n(x) = 0,

η′n(0) = νηn(0).
(3.4)

Moreover, we obtain the following cascade of equations for ηn for n ≥ 2{
η′′n(x) = −(1 + q(x))ηn−2(x),

η′n(0) = νηn(0),
(3.5)

where ν ∈ R \ {0}, λ > 0, q ∈ D(R), q ≥ 0, and supp(q) ⊆ [0, R] for some R > 0.
To be concrete, let us solve (3.4) and (3.5) with n = 2 by matching the asymptotic
expansion in (3.3) to see what {Sn}2n=0 and {ηn}2n=0 look like.

O(1) : For n = 0, we have {
η′′0(x) = 0,

η′0(0) = νη0(0).
(3.6)

By integrating twice, we find that η0(x) = A0x + B0 where A0, B0 ∈ C are
some constants. By the boundary condition, we find that B0 = A0ν

−1 and hence
η0(x) = A0 (x+ ν−1). Observe that a0(x) = 1+S0 in (3.3). Asymptotic matching,
i.e. matching for x > R, gives A0 = 0 and S0 = −1. Thus, we have that

S0 = −1 and η0(x) = 0. (3.7)

Remark 3.1. Under the mixed-boundary condition, ν ̸= 0, we have S(λ)
λ→0→ −1.

O(λ) : For n = 1, we have {
η′′1(x) = 0,

η′1(0) = νη1(0).
(3.8)

Similarly, we find that η1(x) = A1x+B1 where A1, B1 ∈ C are some constants. By
the boundary condition, we find thatB1 = A1ν

−1 and hence η1(x) = A1 (x+ ν−1).
Observe that a1(x) = i(1−S0)x+S1 in (3.3). Asymptotic matching gives A1 = 2i
and S1 = 2iν−1. Thus, we have that

S1 = 2iν−1 and η1(x) = 2i
(
x+ ν−1

)
. (3.9)

O(λ2) : For n = 2, we have{
η′′2(x) = −(1 + q(x))η0(x),

η′2(0) = νη2(0).
(3.10)

Since we have already found η0(x) = 0, we find that η2(x) = A2x + B2 where
A2, B2 ∈ C are some constants. By the boundary condition, we find that B2 =

A2ν
−1 and hence η1(x) = A2 (x+ ν−1). Observe that a2(x) = − (1+S0)

2
x2− iS1x+

S2 in (3.3). Asymptotic matching gives A2 = −iS1 = 2ν−1 and S2 = 2ν−2. Thus,
we have that

S2 = 2ν−2 and η2(x) = 2ν−1
(
x+ ν−1

)
. (3.11)
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Full asymptotic expansion. Let us now turn to the full asymptotic expansion
for η and, in particular, S. The next result states that, for every n, the function
ηn is a polynomial for x > R.

Lemma 3.2. Let n ∈ N \ {1}. Consider the following BVP: find ηn ∈ C2(R>0)
such that {

η′′n(x) = −(1 + q(x))ηn−2(x),

η′n(0) = νηn(0),
(3.12)

where ν, λ, and q are as in (3.5). Then there exists a unique polynomial Pn of
degree at most n such that ηn(x) = Pn(x)+An (x+ ν−1) for x > R where An ∈ C
is some suitable constant.

Proof. Clearly, η2 satisfies Lemma 3.2 with P2 = 0 and A2 = 2ν−1. Assume that
Lemma 3.2 is true for n = k. Let us now prove this result for n = k + 2. By
integrating the ODE in (3.12) twice, we find that

ηk+2(x) =

∫ x

0

∫ t

0

−(1 + q(τ))ηk(τ)dτdt︸ ︷︷ ︸
=:η̃k+2(x)

+Ak+2

(
1 + ν−1

)
. (3.13)

We aim to show that η̃k+2(x) is a polynomial of degree at most k + 2 for x > R.
Splitting η̃k+2(x) into two integrals, we have

η̃k+2(x) =

∫ R

0

∫ t

0

−(1 + q(τ))ηk(τ)dτdt︸ ︷︷ ︸
=:I1

+

∫ x

R

∫ t

0

−(1 + q(τ))ηk(τ)dτdt︸ ︷︷ ︸
=:I2

. (3.14)

Observe that, by integration by parts,

I1 =

∫ R

0

t′
∫ t

0

−(1 + q(τ))ηk(τ)dτdt

= R

∫ R

0

−(1 + q(τ))ηk(τ)dτ︸ ︷︷ ︸
const

−
∫ R

0

t (−(1 + q(τ))) ηk(t)dt︸ ︷︷ ︸
const

.

Moreover, by our inductive hypothesis, we have

I2 =

∫ x

R

∫ R

0

(−1 + q(τ))ηk(τ)dτ︸ ︷︷ ︸
const

−
∫ t

R

Pk(x) + Ak

(
x+ ν−1

)
dτ

 dt,

which is a polynomial of degree at most k + 2. □

Remark 3.3. Note that η0(x) and η1(x) also satisfies Lemma 3.2 with P0 ≡ P1 ≡ 0.

The importance of Lemma 3.2 is that we can now match the polynomial ηn
with an, for x > R to determine the An and Sn. Indeed, from (3.3) and Lemma
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3.2, it follows that for the asymptotic ansatz (3.1)-(3.2) to be valid, one must
necessarily have

Pn(x) + An

(
x+ ν−1

)
= an(x) :=

(ix)n

n!
+

n∑
k=0

(−ix)k

k!
Sn−k, x > R. (3.15)

Denoting Pn(x) =
n∑

k=0

b
(n)
k xk; then by equating coefficients in (3.15), we arrive at

the constraints

b
(n)
0 = Sn − Anν

−1, (3.16)

b
(n)
1 = −iSn−1 − An, (3.17)

b
(n)
j = δn,j

in

n!
+

(−i)j

j!
Sn−j, 2 ≤ j ≤ n, (3.18)

From (3.16) and (3.17) it follows that

An = b
(n)
1 + iSn−1

and, therefore

Sn = b
(n)
0 − (b

(n)
1 + iSn−1)ν

−1.

We shall now represent b
(n)
0 and b

(n)
1 in terms of the potential q and Aj with some

j ≤ n.

Proposition 3.4. Denoting b
(0)
0 = b

(1)
0 = b

(1)
1 = 0. For n ∈ N \ {1}, one has

b
(n)
0 =

⌊n
2
⌋∑

j=1

An−2j⟨q, tLj−1h⟩,

b
(n)
1 = −

⌊n
2
⌋∑

j=1

An−2j⟨q, Lj−1h⟩,

where h(t) = t+ν−1, Lu(x) =
∫ x

0

∫ t

0
−(1+q(τ))u(τ)dτdt, and ⟨q, f⟩ :=

∫ R

0
q(t)f(t)dt.

Proof. We have ηn(x) = Pn(x)+Anh(x), where Pn(x) =
∫ x

0

∫ t

0
− ((1 + q(τ)) ηn−2(τ)dτdt.

Consider the linear map L defined as

Lu(x) :=

∫ x

0

∫ t

0

− ((1 + q(τ))u(τ)dτdt.

By linearity, we have LP0 = 0 since P0 = 0. We also have P2 = Lη0 = L(P0 +
A0h) = A0Lh and P4 = Lη2 = L(P2 + A2h) = A0L

2h+ A2Lh. By induction, we
have for k ∈ {0} ∪ N

P2k(x) =
k∑

j=1

A2(k−j)L
jh.

Similarly, we have

P2k+1(x) =
k∑

j=1

A2(k−j)+1L
jh.
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Observe that

L(Lj−1h) =

∫ x

0

∫ t

0

− ((1 + q(τ))Lj−1h(τ)dτdt

=

∫ R

0

t′
∫ t

0

− ((1 + q(τ))Lj−1h(τ)dτdt+

∫ x

R

t′
∫ t

0

− ((1 + q(τ))Lj−1h(τ)dτdt

=

[
t

∫ t

0

− ((1 + q(τ))Lj−1h(τ)dτ

]R
t=0

−
∫ R

0

tQ(t)Lj−1h(t)dt

+

[
t

∫ t

0

− ((1 + q(τ))Lj−1h(τ)dτ

]x
t=R

−
∫ x

R

t[− ((1 + q(τ))]Lj−1h(t)dt

= x

∫ x

0

− ((1 + q(τ))Lj−1h(τ)dr −
∫ R

0

t[− ((1 + q(τ))]Lj−1h(t)dt+

∫ x

R

tLj−1h(t)dt︸ ︷︷ ︸
no linear terms

.

This implies that

b
(2k)
0 =

k∑
j=1

A2(k−j)⟨q, tLj−1h⟩,

b
(2k)
1 = −

k∑
j=1

A2(k−j)⟨q, Lj−1h⟩.

Similarly, one can show that

b
(2k+1)
0 =

k∑
j=1

A2(k−j)+1⟨q, tLj−1h⟩,

b
(2k+1)
1 = −

k∑
j=1

A2(k−j)+1⟨q, Lj−1h⟩.

Here ⟨q, f⟩ :=
∫ R

0
q(t)f(t)dt. □

Summarising the above results, determines all terms in the asymptotic expan-
sions (3.1)-(3.2):

Corollary 3.5. The full asymptotic expansion η and of the scattering matrix S
under the mixed-boundary condition with ν ̸= 0 are given by:

A0 = 0, A1 = 2i, An = −iSn−1 − b
(n)
1 for n ≥ 2;

S0 = −1, S1 = 2iν−1, Sn = b
(n)
0 − (b

(n)
1 + iSn−1)ν

−1 for n ≥ 2,
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where

b
(n)
0 =

⌊n
2
⌋∑

j=1

An−2j⟨q, tLj−1h⟩,

b
(n)
1 = −

⌊n
2
⌋∑

j=1

An−2j⟨q, Lj−1h⟩,

h(t) = t+ ν−1, Lu(x) =
∫ x

0

∫ t

0
−(1 + q(τ))u(τ)dτdt, and ⟨q, f⟩ :=

∫ R

0
q(t)f(t)dt.

For consistency, we need to demonstrate that An and Sn given in Corollary 3.5,
satisfy (3.18). Put another way, for these An and Sn, we need to demonstrate
that, for each and every n, ηn equals an in the matching region x > R:

Proposition 3.6. Suppose {Aj}j∈N and {S}j∈N are given by Corollary 3.5. Then

ηn(x) =
(ix)n

n!
+

n∑
k=0

(−ix)k

k!
Sn−k, x > R, n ∈ N.

Proof. We need to establish (3.16)-(3.18). However, equations (3.16) and (3.17)
follow from definition of An and Sn. Let us show that (3.18) holds.

First note, from (3.12), the fact q ≡ 0 and the fact ηn = Pn + An(x+ ν−1) for
x > R, one has

P ′′
n (x) = −Pn−2(x)− An−2

(
x+ ν−1

)
, x > R,

or in component form

j(j − 1)b
(n)
j = −b

(n−2)
j−2 − δj,3An−2 − δj,2An−2ν

−1, 2 ≤ j ≤ n. (3.19)

We shall prove the desired result by mathematical induction.

(1) For n = 2. Notice that, since S0 = −1, the right-hand-side of (3.18), for
n = 2, reads

i2

2!
+

(−i)2

2!
S0 = 0.

So, we need to show b
(2)
2 = 0. From (3.19) it follows that

2b
(2)
2 = −b

(0)
0 − A0ν

−1.

Now, since A0 = b
(0)
0 = 0, it follows that b

(2)
2 = 0. Therefore, (3.18) holds

for n = 2.
(2) Suppose (3.18) holds for n − 1 ≥ 2. We shall show it holds for n. Fix

2 ≤ j ≤ n. Equation (3.16) and (3.17) give

b
(n−2)
0 = Sn−2 − An−2ν

−1, b
(n−2)
1 = −iSn−3 − An−2.

Substituting this into (3.19) gives

j(j − 1)b
(n)
j = (δj,3 + δj,2 − 1)b

(n−2)
j−2 + δj,3iSn−3 − δj,2Sn−2. (3.20)

Equation (3.18), for n− 2 gives

b
(n−2)
j−2 = −δn−2,j−2

in

(n− 2)!
− (−i)j

(j − 2)!
Sn−j. (3.21)
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Substituting this into (3.20), and the fact n− 2 > 1 gives

j(j − 1)b
(n)
j = (δj,3 + δj,2 − 1)

(
− δn−2,j−2

in

(n− 2)!
− (−i)j

(j − 2)!
Sn−j

)
+ δj,3iSn−3 − δj,2Sn−2

= δn−2,j−2
in

(n− 2)!
+

(−i)j

(j − 2)!
Sn−j.

Dividing both sides of the above equation by j(j − 1) gives (3.18).

□

3.2. Asymptotic expansion of S-matrix under Neumann boundary con-
dition. Under the Neumann boundary condition, substituting (3.1) into (2.1)
gives the following equations for n ∈ {0, 1}{

η′′n(x) = 0,

η′n(0) = 0.
(3.22)

Moreover, we obtain the following cascade of equations for ηn for n ≥ 2{
η′′n(x) = −(1 + q(x))ηn−2(x),

η′n(0) = 0,
(3.23)

where ν ∈ R \ {0}, λ > 0, q ∈ D(R), q ≥ 0, and supp(q) ⊆ [0, R] for some R > 0.
To be concrete, let us solve (3.22) by matching the asymptotic expansion in (3.3)
to see what {Sn}1n=0 and {ηn}1n=0 look like.
O(1) :. For n = 0, we have {

η′′0(x) = 0,

η′0(0) = 0.
(3.24)

By integrating twice, we find that η0(x) = A0x+ B0 where A0, B0 ∈ C are some
constants. By the boundary condition, we find that A0 = 0 and hence η0(x) = B0.
Observe that a0(x) = 1+ S0 in (3.3). Asymptotic matching gives S0 = B0 − 1 so
we need to go one step further to find S0.
O(λ) :. For n = 1, we have {

η′′1(x) = 0,

η′1(0) = 0.
(3.25)

Similarly, we find that η1(x) = A1x+B1 where A1, B1 ∈ C are some constants. By
the boundary condition, we find that A1 = 0 and hence η1(x) = B1. Observe that
a1(x) = i(1−S0)x+S1 in (3.3). Asymptotic matching gives B1 = i(1−S0)x+S1.
Thus, we have that

S0 = 1 and η0(x) = 2. (3.26)

Remark 3.7. Under Neumann boundary condition, we have S(λ)
λ→0→ 1.
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4. Justification of the asymptotic expansion of S-matrix

Here, we shall justify the formal asymptotic expansion for the scattering matrix
S. In particular, we shall prove the following result:

Theorem 4.1. Fix β > 0 and N ∈ N. Then, there exists λ0 > 0 and C > 0 such
that ∣∣∣∣∣S −

N∑
n=0

λnSn

∣∣∣∣∣ ≤ CλN+1−2β| lnλ|N−1 for all |λ| < λ0.

Proof of Theorem 4.1. Let δ > 0 be such that λ| lnλ| < 1. Consider |λ| <
λ1 := min{1, e−R, e−2, δ}. Notice, for such λ that | lnλ| > 2 and | lnλ| > R.

We begin with some auxiliary results that will be utilised in the proof of The-
orem 4.1. Fix N ∈ N, set

ηin :=
N∑

n=0

λnηn

and

ηout := eiλx +

(
N∑

n=0

λnSn

)
e−iλx

where ηn and Sn are given by Lemma 3.2 and Corollary 3.5. Let χ ∈ C∞
0 (0,∞)

be a smooth cut off function (bounded by one) that is equals one on (0, 1) and
zero on (2,∞). Let us consider the approximation

ηapp(x) := χ
(

x
| lnλ|

)
ηin(x) +

(
1− χ

(
x

| lnλ|

))
ηout(x).

Proposition 4.2. For N ∈ N, β > 0. and |λ| < λ1, one has

ηin = ηout + r ∈ (| lnλ|, 2| lnλ|).

Furthermore, (∫ 2| lnλ|

| lnλ|
e2βx|r(x)|2 dx

)1/2

≤ C0λ
N+1−2β| lnλ|N+1

and (∫ 2| lnλ|

| lnλ|
e2βx|r′(x)|2 dx

)1/2

≤ C0λ
N+1−2β| lnλ|N

for some constant C0 > 0 independent of λ.

Proof. We shall use the fact∫ 2| lnλ|

| lnλ|
e2βxx2n dx ≤ 1

2β
λ−4β(2| lnλ|)2n, (4.1)
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for β > 0. Indeed, for 0 < a < b and n ∈ N, by integration by parts

∫ b

a

e2βxx2n dx =
1

2β
e2βxx2n|bx=a −

n

β

∫ b

a

e2βxx2n−1 dx︸ ︷︷ ︸
≤0

≤ 1

2β
e2βxx2n|bx=a =

1

2β
e2βbb2n− 1

2β
e2βaa2n︸ ︷︷ ︸
≤0

≤ 1

2β
e2βbb2n.

Now, by Proposition 3.6, one has

ηin(x) =
N∑

n=0

λn

(
(ix)n

n!
+

n∑
k=0

(−ix)k

k!
Sn−k

)
.

Moreover, since

(
∞∑
n=0

λnSn

)
e−iλx =

(
∞∑
n=0

λnSn

)(
∞∑
n=0

λn (−ix)n

n!

)

=
N∑

n=0

λn

(
n∑

k=0

(ix)k

k!
Sn−k

)
+

N∑
n=0

Sn

(
∞∑

j=N+1

λj (−ix)j−n

(j − n)!

)
,

then

ηout(x) = ηin(x) + r(x); r(x) :=
∞∑

n=N+1

λn (ix)
n

n!
+

N∑
n=0

Sn

(
∞∑

j=N+1

λj (−ix)j−n

(j − n)!

)
.

(4.2)

∥r∥ :=

(∫ 2| lnλ|

| lnλ|
e2βx|r(x)|2 dx

)1/2

,

one has,

∥r∥ ≤
∞∑

n=N+1

λn

n!

(∫ 2| lnλ|

| lnλ|
e2βxx2n dx

)1/2

+
N∑

n=0

|Sn|
∞∑

j=N+1

λj

(j − n)!

(∫ 2| lnλ|

| lnλ|
e2βxx2(j−n) dx

)1/2

.
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Now, (4.1) gives

∞∑
n=N+1

λn

n!

(∫ 2| lnλ|

| lnλ|
e2βxx2n dx

)1/2

≤
∞∑

n=N+1

λn

n!

1√
2β

λ−2β(2| lnλ|)n

=
λ−2β

√
2β

∞∑
n=N+1

λn

n!
(2| lnλ|)n

≤ λ−2β

√
2β

λN+1(| lnλ|)N+1

∞∑
n=N+1

2n

n!︸ ︷︷ ︸
≤e2

≤ e2√
2β

λN+1−2β(| lnλ|)N+1.

The second to last inequality comes from the fact λ| lnλ| < 1. Similarly, for
0 ≤ n ≤ N , one has

∞∑
j=N+1

λj

(j − n)!

(∫ 2| lnλ|

| lnλ|
e2βxx2(j−n) dx

)1/2

≤ λ−2β

√
2β

| lnλ|−n

∞∑
j=N+1

λj| lnλ|j 2j−n

(j − n)!

≤ e2√
2β

λN+1−2β| lnλ|N+1| lnλ|−n,

and, so

N∑
n=0

|Sn|
∞∑

j=N+1

λj

(j − n)!

(∫ 2| lnλ|

| lnλ|
e2βxx2(j−n) dx

)1/2

≤ e2√
2β

λN+1−2β| lnλ|N+1

N∑
n=0

|Sn|| lnλ|−n

︸ ︷︷ ︸
≤∥S∥N 1

1−| lnλ|−1≤2∥S∥N

≤ 2e2∥S∥N√
2β

λN+1−2β| lnλ|N+1,

for ∥S∥N := max
n=0,...,N

{Sn} and | lnλ| ≥ 2. Putting all this together gives

∥r∥ ≤ e2√
2β

(1 + 2∥S∥N)λN+1−2β| lnλ|N+1.

To calculate the norm of r′ we proceed exactly as above. Differentiating (4.2)
gives

η′out(x) = η′in(x)+r′(x); r′(x) =
∞∑

n=N+1

inλn xn−1

(n− 1)!
+

N∑
n=0

Sn

(
∞∑

j=N+1

(−i)j−nλj xj−n−1

(j − n− 1)!

)
.

Then, we readily compute

∥r′∥ ≤ e2√
2β

(
1 + 2∥S∥N

)
λN+1−2β| lnλ|N .

□
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For the proof of Theorem 4.1 we shall introduce the following function spaces:

W l
β := {u : eβxu ∈ H l(0,∞)}

for whole number l and real number β. Note that W l
β is a Hilbert space when

equipped with the inner product that induces the norm

∥u∥W l
β
:= ∥eβxu∥Hl(0,∞).

Fix λ ∈ R. Let us consider the following problem: for given (g, f) ∈ C×W 0
β find

(c, v) ∈ C×W 2
β such that u = ce−iλx + v satisfies{

u′′ + λ2(q + 1)u = f in (0,∞),

u′(0)− νu(0) = g.
(4.3)

The following well-posedness result holds:

Lemma 4.3. For each β ̸= 0, there exists a λ2 > 0 such that for all |λ| < λ2,
problem (4.3) is uniquely solvable. Furthermore, one has

∥(c, v)∥C×W2
β
≤ K∥(g, f)∥C×W 0

β
, (4.4)

for some positive constant K that is independent of f and g.

To prove Lemma 4.3, we use the following result:

Proposition 4.4. Let f ∈ W 0
β , β ̸= 0, then

v(x) :=

∫ ∞

x

f(t) dt

belongs to W 0
β .

Proof. It is sufficient to establish∫ ∞

0

e2βx
∣∣∣∣∫ ∞

x

f(t) dt

∣∣∣∣2 dx ≤ 1

β2

∫ ∞

0

e2βxf 2(x) dx. (4.5)

To that end, by Cauchy-Schwarz inequality∣∣∣∣∫ ∞

x

f(t) dt

∣∣∣∣2 ≤ (∫ ∞

x

eβtf 2(t) dt

)(∫ ∞

x

e−βt dt

)
and ∫ ∞

x

e−βt dt =
1

β
e−βx,

plus ∫ ∞

x

eβtf 2(t) dt =

∫ ∞

0

χ[x,∞)(t)e
βtf 2(t) dt

So, ∣∣∣∣∫ ∞

x

f(t) dt

∣∣∣∣2 ≤ 1

β
e−βx

∫ ∞

0

χ[x,∞)(t)e
βtf 2(t) dt.
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Then, multiplying both sides of the inequality by e2βx and integrating with respect
to x gives∫ ∞

0

e2βx
∣∣∣∣∫ ∞

x

f(t) dt

∣∣∣∣2 dx ≤ 1

β

∫ ∞

0

eβx
∫ ∞

0

χ[x,∞)(t)e
βtf 2(t) dtdx. (4.6)

By applying Fubini’s theorem to the RHS gives∫ ∞

0

eβx
∫ ∞

0

χ[x,∞)(t)e
βtf 2(t) dtdx =

∫ ∞

0

∫ ∞

0

eβxχ[x,∞)(t)e
βtf 2(t) dtdx

=

∫ ∞

0

∫ ∞

0

eβxχ[x,∞)(t)e
βtf 2(t) dxdt

=

∫ ∞

0

eβtf 2(t)

∫ ∞

0

χ[x,∞)(t)e
βx dxdt.

Now, ∫ ∞

0

χ[x,∞)(t)e
βx dx =

∫ t

0

eβx dx =
1

β
(eβt − 1).

Thus∫ ∞

0

eβx
∫ ∞

0

χ[x,∞)(t)e
βtf 2(t) dtdx =

∫ ∞

0

1

β
(eβt − 1)eβtf 2(t) dt

=
1

β

∫ ∞

0

(
e2βtf 2(t)− eβtf 2(t)

)
dt

=
1

β

∫ ∞

0

e2βtf 2(t) dt− 1

β

∫ ∞

0

eβtf 2(t) dt

≤ 1

β

∫ ∞

0

e2βtf 2(t) dt.

The last inequality follows from the fact that 1
β

∫∞
0

eβtf 2(t) dt ≥ 0. Combining

this with (4.6) gives∫ ∞

0

e2βx
∣∣∣∣∫ ∞

x

f(t) dt

∣∣∣∣2 dx ≤ 1

β2

∫ ∞

0

e2βtf 2(t) dt;

i.e. (4.5) holds. □

Proof of Lemma 4.3. Let Lλ : C×W 2
β → C×W 0

β be given by the mapping

Lλ(c, v) =
(
(ce−iλx+v)′(0)−ν(ce−iλx+v)(0), (ce−iλx+v)′′+λ2(1+q)(ce−iλx+v)

)
.

Since q is bounded then clearly Lλ is a continuous operator. To prove the Lemma
it is equivalent to prove that Lλ has a bounded inverse for small enough λ.

Step 1. Here we consider the case λ = 0. We shall prove L0 is boundedly
invertible. Fix (g, f) ∈ C×W 0

β . From Proposition 4.4, it follows that

v(x) :=

∫ ∞

x

∫ ∞

y

f(t) dt dy

belongs to W 2
β and solves v′′ = f in (0,∞). Thus

(c, v), for c = ν−1v′(0)− v(0)− ν−1g,
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satisfies
L0(c, v) = (g, f);

Namely, L0 is surjective. Furthermore, by construction (cf. (4.5)), it follows that

∥(c, v)∥C×W2
β
≤ C1∥(g, f)∥C×W 0

β
(4.7)

for some C1 > 0 independent of f .
It remains to show that L0 is injective. Suppose (c, v) satisfies L0(c, v) = (0, 0).

Then v′′ = 0 and v′(0)− ν(c+ v(0)) = 0; that is

v(x) = a(x+ ν−1) + c

for some constant a. However, v will belong to W2
β only if a = c = 0; that is L0 is

injective. Thus L−1
0 exists, and from (4.7) it follows that the inverse is bounded;

indeed (4.7) can be rewritten as

∥L−1
0 f∥C×W2

β
≤ C1∥(g, f)∥C×W 0

β
∀g ∈ C,∀f ∈ W 0

β . (4.8)

Step 2. Here we consider the case λ ̸= 0 but sufficiently small. First note that,
one has

Lλ(c, v)− L0(c, v) =
(
− iλc, λ2qce−iλx + λ2(1 + q)v

)
.

Therefore, since q ∈ C∞
0 (0, R), for |λ| ≤ 1, one has

∥Lλ(c, v)− L0(c, v)∥W0
β×C ≤ |λ|C2

√
|c|2 + ∥v∥2

W 0
β

(4.9)

for some C2 independent of c and v. Now,

Lλ = L0 + Lλ − L0 =
(
1 + (Lλ − L0)L−1

0

)
L0.

Now, consider the operator T : C×W 0
β → C×W 0

β given by T := (Lλ − L0)L−1
0 .

From, (4.9) and (4.8), one has

∥T (g, f)∥W 0
β
≤ |λ|C2C1

√
|g|2 + ∥f∥2

W 0
β

∀g ∈ C, ∀f ∈ W 0
β ;

consequently, ∥T∥ < 1 for |λ| < λ2 := min{1, (C1C2)
−1/2}. Thus, T has a

convergent Neumann series and in particular (1 − T )−1 exists and is bounded.
Consequently, L−1

λ exists, and is bounded, for |λ| < λ0 and is given by

L−1
λ := L−1

0

(
1− (Lλ − L0)L−1

0

)−1
.

□

Proof of Theorem 4.1. Fix λ such that Proposition 4.2 and Lemma 4.3 holds; i.e.
|λ| < λ0 := min{λ1, λ2}.

We compute
η′′app + λ2(1 + q)ηapp = fλ,

for

fλ(x) =
1

| lnλ|2
χ′′( x

| lnλ|

)
[ηin(x)− ηout(x)] +

2

| lnλ|
χ′( x

| lnλ|

)
[η′in(x)− η′out(x)] .

By construction χ′( x
| lnλ|

)
and χ′′( x

| lnλ|

)
are non-zero only for x ∈ (| lnλ|, 2| lnλ|).

Consequently, from Proposition 4.2, it follows that
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∥ 1

| lnλ|2
χ′′( x

| lnλ|

)
[ηin(x)− ηout(x)] ∥W 0

β
≤ C0

λN+1−2β| lnλ|N+1

| lnλ|2
,

and

∥ 1

| lnλ|
χ′( x

| lnλ|

)
[η′in(x)− η′out(x)] ∥W 0

β
≤ C0

λN+1−2β| lnλ|N

| lnλ|
.

That is,

∥fλ∥W 0
β
≤ 3C0λ

N+1−2β| lnλ|N−1. (4.10)

Finally, notice that the difference r := ηλ − ηapp satisfies

r = ce−iλx + v

for

c = S −
N∑

n=o

λnSn

and some v ∈ W 2
β . Furthermore, r solves{

r′′ + λ2(q + 1)r = −fλ in (0,∞),

r′(0)− νr(0) = 0.

That is, (c, v) ∈ C×W 2
β solves (4.3) for (g, f) = (0,−fλ); therefore, from Lemma

4.3 (namely (4.4)) and (4.10) it follows that

∥(c, v)∥C×W ≤ 3KC0λ
N+1−2β| lnλ|N−1.

In particular, the desired inequality holds, indeed:∣∣∣∣∣S −
N∑

n=0

λnSn

∣∣∣∣∣ = |c| ≤ 3KC0λ
N+1−2β| lnλ|N−1.

□

Appendix A. Picard-Lindelöf theorem

Definition A.1 (Contraction mapping). Let (X, d) be a metric space. A function
T : X → X is a contraction mapping if ∃c ∈ (0, 1) such that ∀x, y ∈ X

d(T (x), T (y)) ≤ cd(x, y).

Definition A.2 (Fixed point). Let T : X → X be a function. A fixed point of
T is a point x ∈ X such that T (x) = x.

Theorem A.3 (Contraction mapping theorem). Let (X, d) be a non-empty com-
plete metric space and let T : X → X be a contraction mapping. Then T has a
unique fixed point x ∈ X, which satisfies x = limn→∞ xn, where xn+1 = T (xn)
and x0 ∈ X is arbitrary.
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Proof. Existence: Let x0 ∈ X and define the sequence {xn} recursively by xn+1 =
T (xn). Let us first show that {xn} is a Cauchy sequence. Note that

d (x2, x1) = d (T (x1) , T (x0)) ≤ cd (x1, x0) ,

d (x3, x2) = d (T (x2) , T (x1)) ≤ cd (x2, x1) ≤ c2d (x1, x0) ,

and by induction, ∀n ≥ 1, d (xn+1, xn) ≤ cnd (x1, x0). Now let m,n ∈ N and
w.l.o.g. suppose m > n. Then

d (xm, xn) ≤ d (xm, xm−1) + d (xm−1, xm−2) + . . .+ d (xn+1, xn)

≤ cm−1d (x1, x0) + cm−2d (x1, x0) + . . . cnd (x1, x0)

= d (x1, x0)
m−1∑
i=n

ci

≤ d (x1, x0)
∞∑
i=n

ci
n→∞→ 0.

Thus, {xn} is indeed Cauchy. Since X is complete, ∃x ∈ X such that xn
n→∞→ x.

Let us now show that x is a fixed point of T . Note that T (xn)
n→∞→ T (x) as

d (T (xn) , T (x)) ≤ cd (xn, x)
n→∞→ 0.

Since T (xn) = xn+1, T (xn) is just a subsequence of {xn} and hence T (xn)
n→∞→ x.

By the uniqueness of limits, we conclude that T (x) = x. Uniqueness: Suppose
that x, y are two fixed points of T with x ̸= y. Then

d(T (x), T (y)) ≤ cd(x, y) ⇒ d(x, y) ≤ cd(x, y) ⇒ 1 ≤ c,

contradicting the fact that T is a contraction mapping. Thus, the fixed point x
is unique. □

Theorem A.4 (Global Version of the Picard-Lindelöf Theorem). Let I := [a, b] ⊂
R, x0 ∈ I and y0 ∈ Rn, and f : I × Rn → Rn be a continuous function which
satisfies a global Lipschitz condition with respect to y as follows:

∃L > 0 : ∀x ∈ I, ∀y1, y2 ∈ Rn : ∥f (x, y1)− f (x, y2)∥2 ≤ L ∥y1 − y2∥2 .
Then the IVP

y′(x) = f(x, y(x)), y (x0) = y0

has a unique solution y ∈ C1 (I → Rn).

Proof. Transformation to an integral equation: If y ∈ C1 (I → Rn) is a
solution to the IVP, then the Fundamental Theorem of Calculus states

y(x) = y0 +

∫ x

s=x0

f(t, y(t))ds =: (T (y))(x), x ∈ I.

Conversely, if y ∈ C (I → Rn) is a solution to this integral equation, then (again
by the Fundamental Theorem of Calculus), the integral in the right-hand side is a
differentiable function of x, hence y ∈ C1 (I → Rn), and we can differentiate this
integral equation to obtain the IVP. Hence, the IVP and this integral equation
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are equivalent.

Applying the Contraction Mapping Theorem: We choose U = C(I → Rn)
with the special norm

∥u∥U := sup
x∈I

e−(L+1)|x−x0|∥u(x)∥2

with L being the constant appearing in the Lipschitz condition. It can be shown
that (U, ∥ · ∥U) is complete and T : U → U is well defined. It remains to show T
is a contraction mapping.

First we note that

(T (u)− T (ũ))(x) =

∫ x

x0

f(t, u(t))− f(t, ũ(t))dt

and therefore we find

e−(L+1)|x−x0|∥(T (u)− T (ũ))(x)∥2 = e−(L+1)|x−x0|
∥∥∥∥∫ x

x0

f(t, u(t))− f(t, ũ(t))dt

∥∥∥∥
2

≤ e−(L+1)|x−x0|
∫ max(x,x0)

min(x,x0)

∥f(t, u(t))− f(t, ũ(t))∥2 dt

≤ e−(L+1)|x−x0|
∫ max(x,x0)

min(x,x0)

L∥u(t)− ũ(t)∥2 dt

≤ e−(L+1)|x−x0|L

∫ max(x,x0)

min(x,x0)

e(L+1)|t−x0| e−(L+1)|t−x0|∥u(t)− ũ(t)∥2︸ ︷︷ ︸
≤∥u−ũ∥U

dt

≤ ∥u− ũ∥Ue−(L+1)|x−x0|L

∫ max(x,x0)

min(x,x0)

e(L+1)|t−x0|dt

= ∥u− ũ∥Ue−(L+1)|x−x0|L · 1

L+ 1

(
e(L+1)|x−x0| − e0

)
≤ L

L+ 1
∥u− ũ∥U .

This shows that T is a contraction mapping with constant c = L/(L + 1) < 1.
Therefore, CMT implies that T has exactly one fixed point y in U . □
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