ASYMPTOTIC ANALYSIS FOR SCATTERING OFF
ONE-DIMENSIONAL COMPACTLY SUPPORTED WEAK
POTENTIALS

ZHIYU WANGH

ABSTRACT. Scattering theory, especially in quantum mechanics and wave prop-
agation, provides profound insights into the interactions within various phys-
ical systems. In this paper, we focus on the mathematical characterization
and asymptotic analysis of the scattering matrix under mixed and Neumann
boundary conditions within the context of one-dimensional compactly sup-
ported potential ODEs.

1. INTRODUCTION AND PRELIMINARIES

We study the asymptotic behavior of the scattering matrix, S(\), for a one-
dimensional second-order non-linear ordinary differential equation under mixed
and Neumann boundary conditions. Assuming the potential ¢ has compact
support, we derive the complete asymptotic expansion of S(A) for the mixed-
boundary condition with v # 0 and the leading term for the Neumann boundary
condition (v = 0). Our analysis reveals distinct instability in the behavior of

the scattering matrix: under Neumann condition, S(\) g 1, contrasting with a
convergence to —1 under other conditions.

The paper is structured as follows: In Sec. 2, we formally present our settings
and few basic definitions. In Sec. 3, we derive the complete asymptotic expansion
of S-matrix under mixed-boundary condition with v # 0 and the leading term in
the asymptotic expansion under Nuemann boundary condition. Sec. 4 focuses
on the justification of such expansion and Appendix A gives a brief review of
Picard-Lindelof Theorem.

Notations. Let 2 C C be a non-empty open subset of the set of complex
numbers C. For any complex number z = x+1iy, its complex conjugate is denoted
by z*, where z* = x —iy. The set of real numbers is denoted by R and the set of
positive real numbers is denoted by R.o. Additionally, we use N :={1,2,3,...}
to denote the set of natural numbers.

2. ABSTRACT PROBLEM FORMULATION

Definition 2.1 (Continously differentiable functions). Let k£ € {0} UN. A func-
tion f : Q — Cis k times continuously differentiable if all partial derivatives of
f up to and including order k exist and are continuous on §2.

We use the following notations for the standard function classes:

Key words and phrases. Asymptotic analysis, ordinary differential equations (ODEs), scat-
tering theory.
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e C°(Q) = C(Q) is the set of continuous functions on ;

o CH(Q):={f:Q — C| fis k times continuously differentiable};

o C(Q) := (N2, C*(Q) is the set of infinitely differentiable functions (or
smooth functions) on 2.

Definition 2.2 (Support of continuous functions). Let f € C(€2). The support
of f is the closure of the set {z € Q, f(x) # 0} relative to Q:

supp(f) :== QN {x € Q| f(x) # 0}.

Definition 2.3 (Test functions). D(2) C C>() is the set of smooth functions
with compact support:

D(Q) := {p € C(Q) : supp(yp) is compact}.

We often call this set the class of test functions.

The standard types of boundary conditions for equations defined on R-y with
dependent variable u(z) that we will consider are
e Dirichlet boundary condition: u(0) = 0;
e Neumann boundary condition: «'(0) = 0;
e Mixed-boundary condition: «'(0) = vu(0) for v € R.

Remark 2.4. Note that both Dirichlet boundary condition and Neumann bound-
ary condition are special cases of mixed-boundary condition, where the former
can be viewed as u(0) = @
case when v = 0.

with ¥ — oo and the latter can be viewed as the

Boundary-value problem (BVP) with mixed-boundary data. Consider
the following one-dimensional BVP: find u(x) € C*(R, ) such that

u"(z) + N (q(z) + 1) u(x) = 0,
—————
w'(0) = vu(0),
where v € R, A > 0,¢ € D(R),q > 0, and supp(q) C [0, R] for some R > 0.
Clearly, we have Q(z) = A\* for = > R.

Proposition 2.5. There exists a unique solution n € C*(R,) to the BVP (2.1)
that additionally satisfies

n(r) = e + Se ™ >R, (2.2)
for some S = S, € C with |S| = 1.
Remark 2.6. S is often called the scattering matrix or S-matrix. One well-

known property of the scattering matrix is that it is unitary, namely, S5* = 1.
In our one-dimensional case, S is a simply a complex scalar of modulus one.

Proof. We first prove this proposition for v = 0. By the global version of the
Picard-Lindelof theorem A.4, there exists a unique solution y € C?([0, K]) for
any K € R with the boundary-values y'(0) = 0 and y(0) = 1. To show 7 in (2.2)
exists and is unique, let us consider n = My for some M € C we will choose
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appropriately later. Observe that Vo € R, n(z) satisfies n"(x) + Q(x)n(z) = 0
and 1'(0) = My/(0) = 0. Thus, 7 is also a solution to the BVP (2.1) with v = 0.
For x > R, we have

() + Ay(@) =0 = yl@) = A 4+ Be

where A, B € C depend on A\. We claim that A # 0. Suppose, for the sake of
contradiction that, A = 0. Then, by construction,

y(r) = Be ™ >R (2.3)
satisfies

y'(x) + Qx)y(x) =0,

y'(0) =0,

y(0) =1L

Observe that for a real constant 7' > R, we obtain that
T
0= [ '@+ Q) v (w)ds
0

= /0 y(@) (" () + Qa)y* (x))dz + [y (2)y"(2) — y(2)y" (2)]g
=y (T)y(T)" —y(T)y'(T)

_ _BAZ-efi)\TB*ei)\T o Befi/\TB*)\ei)\T

= —2i\B)* 22 B =0,

where the second equality is by using integration by parts twice. Thus, (2.3)
becomes y(z) = 0 for x > R. By the uniqueness of solution y, we have y(z) = 0
for > 0 which contradicts the fact that y(0) = 1. Now, if we choose M =
then

1
A

. B .
n<x> _ ez)\x 4 Ze—z)\z7 r>R

) It remains to show that SS* = 1. We use the same technique
h t for a real constant 7' > R, we obtain that

OZA (' (@) + Q@)y(x)) y*(x)da

/\

where Sy =
here. Observ

1—0"\
v

= /O y(@) (" () + Qx)y* (x))dz + [y (v)y" () — y(a)y"™ (2)]g

=y (Ty(T)" = y(T)y'(T)

=\ (1 + S)\€2i>\T — SAB_QMT — |S)\|2) + 1A (1 + SAG_QMT - S)\€2MT - |S)\|2)
= 21— [S)\]}) 22 |5, =1,

which completes the proof for the case where v = 0. Let us now consider the
case for v # 0. Again by the global version of the Picard-Lindelof theorem A.4,
there exists a unique solution y € C?*([0, K]) for any K € R but this time we
use the boundary-values 3/(0) = 1 and y(0) = v~!. Consider = My for some
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M € C we will choose appropriately later. Observe that Va € R, n(z) satisfies
n"(z) + Q(x)n(x) = 0 and 7'(0) = My'(0) = M = vn(0). Thus, 7 is also a
solution to the BVP (2.1) with v # 0. Since v € R, one can observe that

[/ (2)y*(z) — y(x)y" (@)]§ =y (D)y(T)" = y(T)y'(T)" + y(0)y'(0)" — ¢ (0)y(0)"
=y (Dy(T) = y(T)y (1) + — = =

=y'(Dy(T)" —y(T)y'(T)".
Given this observation, the remainder of the proof proceeds identically to the
case when v = 0. ]

3. ASYMPTOTIC EXPANSION OF S-MATRIX UNDER MIXED-BOUNDARY
CONDITION

In this section, we derive the full asymptotic expansion of the scattering matrix
S under the mixed-boundary condition. We first consider the case when v # 0
and later we will consider the Neumann case (v = 0) separately.

Suppose that 7 given by (2.2) admits an asymptotic expansion in terms of A
for > 0 of the form !

m(z) = Znn(:c))\”, x> 0. (3.1)

Suppose that the scattering matrix S given by (2.2) also admits an asymptotic
expansion in terms of A of the form

Sy = Z S (3.2)
n=0

For convenience, we omit the subscript A when the parameter of our asymptotic
expansion is unambiguous.

Due to (3.2) and the Taylor expansion of the exponential function, it follows
immediately that for z > R

n<x> _ 6i)\:r + Sefi)\x

n=0 n=>0 k=0
= Z an ()",
n=0
where a,(x) = % + > o (_Z)k Sp_k. Thus, we obtain another asymptotic
expansion of 7 in terms of A for x > R of the form
n(x) = Z an(T)A". (3.3)
n=0

Our goal now is to find formulas for {S,,}7° .

1See section 4 for details.
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3.1. Asymptotic expansion of S-matrix under mixed-boundary condi-
tion with v # 0. To begin with, substituting (3.1) into (2.1), we obtain the
following equations for n € {0,1}

() =0,
{77%(0) = 1, (0). (3.4)

Moreover, we obtain the following cascade of equations for 7, for n > 2

(@) = =(1+ q(2))nn-2(2),
{n;m) — um(0), 3o
where v € R\ {0}, A > 0,¢ € D(R),q > 0, and supp(q) C [0, R] for some R > 0.

To be concrete, let us solve (3.4) and (3.5) with n = 2 by matching the asymptotic
expansion in (3.3) to see what {S,,}2_, and {n,}2_, look like.

O(1) : For n = 0, we have
o (x) = 0,
{né(o) = vn(0). (3.6)

By integrating twice, we find that ng(x) = Agx + By where Ay, By € C are
some constants. By the boundary condition, we find that By = Aygr~! and hence
no(z) = Ag (x + v~ 1). Observe that ag(z) = 14+Sp in (3.3). Asymptotic matching,
i.e. matching for x > R, gives Ag = 0 and Sy = —1. Thus, we have that

So=—-1 and 1ny(z)=0. (3.7)

Remark 3.1. Under the mixed-boundary condition, v # 0, we have S(\) =0

O(A) : For n =1, we have

i (z) =0,
{77’1(0) —umi(0). o

Similarly, we find that 1, (z) = A;x+ B; where Ay, By € C are some constants. By
the boundary condition, we find that B; = A;v~! and hence 1y (z) = Ay (z +v71).
Observe that a;(z) = i(1—Sp)x+.57 in (3.3). Asymptotic matching gives A; = 2i
and S; = 2iv~!. Thus, we have that

S1=2iv"" and m(z)=2i(z+v7"). (3.9)
O(N\?) : For n = 2, we have

ny(x) = —(1 + g(x))no(x),
{né(o) = vny(0). (3.10)

Since we have already found 7o(xz) = 0, we find that ny(z) = Asx + By where
Ag, B, € C are some constants. By the boundary condition, we find that By =
Aov~! and hence 1 (x) = Ay (z + v~ 1). Observe that ay(z) = —@ﬁ —iS1x+
Sy in (3.3). Asymptotic matching gives Ay = —iS; = 2v~! and Sy = 2v72. Thus,
we have that

Sy =20"" and mp(z)=20""(z+v7"). (3.11)
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Full asymptotic expansion. Let us now turn to the full asymptotic expansion
for n and, in particular, S. The next result states that, for every n, the function
7y is a polynomial for x > R.

Lemma 3.2. Let n € N\ {1}. Consider the following BVP: find n, € C*(Rxq)
such that

1,(0) = v (0),

where v, A\, and q are as in (3.5). Then there exists a unique polynomial P, of
degree at most n such that n,(z) = P,(z)+ A, (x + v~ ) for > R where A, € C
15 some suitable constant.

{nii(:v) = —(1+q(2))m—2(2), (3.12)

Proof. Clearly, 1, satisfies Lemma 3.2 with P, = 0 and A, = 2v~!. Assume that
Lemma 3.2 is true for n = k. Let us now prove this result for n = k£ 4+ 2. By
integrating the ODE in (3.12) twice, we find that

N2 (T / / (14 q(7))m(7 )drdt+Ak+2 (1+v7h). (3.13)

v~

=lp+2(2)

We aim to show that 7g1o(2) is a polynomial of degree at most k + 2 for x > R.
Splitting 7 12(z) into two integrals, we have

M2 (z / / (L4 q(7)m(T drdt+/ / (L4 q(7)m(T )drdt (3.14)

Observe that, by integration by parts,

I = /ORt/ /Ot (1 + q(r))m(r)drdt

~R / (14 g(r)lr)dr — / F(—(1+ g(r)) me(t)dt

J/

Moreover, by our inductive hypothesis, we have

x R t
Ay (1 + ()i - | B+ o+ ar | a

R

vV
const

which is a polynomial of degree at most k + 2. Il
Remark 3.3. Note that no(x) and 1, (z) also satisfies Lemma 3.2 with Py = P, = 0.

The importance of Lemma 3.2 is that we can now match the polynomial 7,
with a,, for x > R to determine the A, and S,,. Indeed, from (3.3) and Lemma
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3.2, it follows that for the asymptotic ansatz (3.1)-(3.2) to be valid, one must
necessarily have

Po(z)+ A, (z+v7") = a,(z) == + Sn—k, x>R. (3.15)

Denoting P, (z) = > b,(:)x’“; then by equating coefficients in (3.15), we arrive at

k=0
the constraints
b =5, — A, (3.16)
b = i8S, — Ay, (3.17)
A G S P (3.18)
j n,]n! ]| n—j» >N, .

From (3.16) and (3.17) it follows that
A, =" 45,
and, therefore
S, =0 — (0" + i8S, )
We shall now represent b ") and b ) in terms of the potential ¢ and A; with some
Jjsn
Proposition 3.4. Denoting b(()o) = b(()l) = bgl) =0. Forn € N\ {1}, one has
L5]
b(()n) - Z An—2j <q7 tLj_1h>a
j=1
5]
bﬁ") = - Z An_2j{q, L’ h),
j=1
where h(t) = t+v7", Lu(z) = [ fo (I4+q(7))u(r )det and {(q, f fo

Proof. We have n,(z) = Pn(x)—i—Anh( ), where P, (z) = [ o — (1 +q(r )nn,Q(T)det.
Consider the linear map L defined as

// (1 + g(7)) u(7)drdt.

By linearity, we have LFPy = 0 since Py = 0. We also have P, = Lng = L(Py +
Aoh) = AgLh and Py = Ly = L(Py + Ash) = AgL*h + Ay Lh. By induction, we
have for k € {0} UN

Py ( ZA2 w7 h.

Similarly, we have

k
Pojyr1(z) = Z Az(k_j)_HLjh.
j=1
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Observe that

L(L’7'h) = // (1 +q(7)) L h(7)drdt

/ / (1 + q(7)) L~ h(r)drdt + / ) LI h(r)drdt

- |t [~ ary pne >de / Q
(ryir| |

— [ e th

et [~ am @] [ e h

t— (1 + q(r)] L h(t)dt + /x tL7 h(t)dt .
JR

= :E/OI — (1 +q(7)) L h(r)dr —

0

J/

TV
no linear terms

This implies that
bk — ZAM Ci{g, tL 7Y,

b = ZAM n{a, L7 h).

J=1
Similarly, one can show that
by (2R ) ZAQ(k —ja1{g, tL7 7Ry,
J=1

k
bg_%ﬂ) == Z Ash—jy+1(q L''h).

j=1
Here fo . ]

Summarising the above results, determines all terms in the asymptotic expan-
sions (3.1)-(3.2):

Corollary 3.5. The full asymptotic expansion 1 and of the scattering matrix S
under the mized-boundary condition with v # 0 are given by:

Ag =0, Ay = 21, A, —@Sn 1—b forn > 2;
Sp = —1, Sy = 2iv 1, Sh b (b(n +iS,_1)v ! forn > 2,
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where
15)
by =Y Anooyla, tL '),
j=1
5]
0 = =3 Auai(q, L),
j=1
h(t) =t+v 1, fo fo (14 q(7))u(r)drdt, and {(q, f) : fo

For Consistency, we need to demonstrate that A,, and S,, given in Corollary 3.5,
satisfy (3.18). Put another way, for these A, and S,, we need to demonstrate
that, for each and every n, n, equals a,, in the matching region x > R:

Proposition 3.6. Suppose {A;};en and {S}jen are given by Corollary 3.5. Then

ix)" " (—ix)k
nn(x):%‘f‘z(k!)sn—k, xr>R, neN.

Proof. We need to establish (3.16)-(3.18). However, equations (3.16) and (3.17)
follow from definition of A, and S,. Let us show that (3.18) holds.

First note, from (3.12), the fact ¢ = 0 and the fact 1, = B, + A,(x + v~ 1) for
x > R, one has

Pl(z) = =Py s(z) — Aya (z+v7"), >R,
or in component form
j(j — 1)b§n) = —byi;m — (5]"3/4”72 — 5j,2An72V717 2 S j S n. (319)
We shall prove the desired result by mathematical induction.

(1) For n = 2. Notice that, since Sy = —1, the right-hand-side of (3.18), for

n = 2, reads
-2

T O

2' + 5 So = 0.

So, we need to show b = 0. From (3.19) it follows that
27 = b0 — A

Now, since Ay = béo) = 0, it follows that bg) = 0. Therefore, (3.18) holds
for n = 2.
(2) Suppose (3.18) holds for n — 1 > 2. We shall show it holds for n. Fix
2 < j <n. Equation (3.16) and (3.17) give
B =G, s — Ao, B = i8S, 5 — A,
Substituting this into (3.19) gives

57— 1B = (85 + 852 — DOSY + 855185 — §;25n2. (3.20)

Equation (3.18), for n — 2 gives

(n-2) _ . ir (=) A
W = —Onaia g~ g (3.21)
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Substituting this into (3.20), and the fact n — 2 > 1 gives

j(] — 1)[); ) = ((5]'73 + (Sj,g — 1)( — 5n—2,j—2 (n — 2)' — (j( _>2)!Sn_j) + 5]',31571_3 — (SjQSn_g

_ i (—i)’
= On-24-2 =2l T G- 2)!5"‘3‘

Dividing both sides of the above equation by j(j — 1) gives (3.18).
[

3.2. Asymptotic expansion of S-matrix under Neumann boundary con-
dition. Under the Neumann boundary condition, substituting (3.1) into (2.1)
gives the following equations for n € {0, 1}

()
1,(0)

Moreover, we obtain the following cascade of equations for 7, for n > 2

0
’ 3.22
0 (3.22)

m(2) = —=(1+ q())na—2(2),
{%(m T (3.23)

where v € R\ {0}, A > 0,qg € D(R),q > 0, and supp(q) C [0, R] for some R > 0.
To be concrete, let us solve (3.22) by matching the asymptotic expansion in (3.3)
to see what {S,}._, and {n,}!_, look like.

O(1) :. For n = 0, we have

o (z) =0,

, (3.24)
15(0) = 0.

By integrating twice, we find that ng(x) = Agx + By where Ay, By € C are some

constants. By the boundary condition, we find that Ay = 0 and hence 1y (z) = By.

Observe that ag(z) = 1+ 5y in (3.3). Asymptotic matching gives Sy = By — 1 so
we need to go one step further to find Sp.

O(\) :. For n = 1, we have
() =0, .
m(0) = 0.

Similarly, we find that n;(xz) = Ajz+ B; where Ay, B; € C are some constants. By
the boundary condition, we find that A; = 0 and hence 7;(x) = B;. Observe that
ar(z) = i(1—Sy)z+ 57 in (3.3). Asymptotic matching gives By = i(1—.Sp)x + 5.

Thus, we have that

So=1 and 1ny(z)=2. (3.26)

Remark 3.7. Under Neumann boundary condition, we have S(\) 309,
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4. JUSTIFICATION OF THE ASYMPTOTIC EXPANSION OF S-MATRIX

Here, we shall justify the formal asymptotic expansion for the scattering matrix
S. In particular, we shall prove the following result:

Theorem 4.1. Fixz 3 > 0 and N € N. Then, there exists \g > 0 and C > 0 such
that
N

S=Y_a"s,

n=0

Proof of Theorem 4.1. Let § > 0 be such that A|InA| < 1. Consider |A| <
A1 :=min{1,e " e72 §}. Notice, for such X that |[In A| > 2 and |In \| > R.

We begin with some auxiliary results that will be utilised in the proof of The-
orem 4.1. Fix N € N, set

S CANT2 I AN for all |A] < No.

N
Thin = Z )\nnn
n=0

and

N
Nout := 61/\3: + (Z /\nsn) e—iAx
n=0

where 7, and S, are given by Lemma 3.2 and Corollary 3.5. Let x € C5°(0, 00)
be a smooth cut off function (bounded by one) that is equals one on (0,1) and
zero on (2,00). Let us consider the approximation

Napp(T) = X(\1§A|)nin<x) + (1 - X(ﬁnn‘mt@)‘
Proposition 4.2. For N € N, > 0. and |\| < Ay, one has
nin:nout+r & (|hl)\’,2|ln>\‘)

Furthermore,

nA|

2 1n A| 1/2
[ @) <o
B

and
210 Al 1/2
[P < oAt
[In Al

for some constant Cy > 0 independent of \.

Proof. We shall use the fact

2| In A 1
/ P dr < — A7 (2]1In \|)?", (4.1)
In )| 25
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for § > 0. Indeed, for 0 < a < b and n € N, by integration by parts

b 1 n b
/ eZﬁszn dr = _€2ﬁxx2n’?::a __/ €2Bxx2nfl dr
a B Ja
. ~~ >
<0

2
1 1 1
< 2Bz .2n|b — QBben__ 2Ba , 2n
_2B€ "o, Zﬁe 256 a
<0
1
< = o2Bbpn
> 256

Now, by Proposition 3.6, one has

n=0 n=0
N n N 00
(iz)" > ( (—iz)? ”)
S (8 ) s (50wl
n=0 (kO k! n=0 j=N+1 (‘7 - n)'

then

Hout () = tha(2) +7(2); r(2) = Y A”% +2 5 < > AJ%) '

one has,

) 1/2
S 2| In A
Z L / 2B 2(5-1) .0 _
(j —n)! [1n A|

j=N+1

> \n 2| | 12 N
s 30 55 ([, o) +3 s
’ n=0

n=N+1 nA|



ASYMPTOTIC ANALYSIS FOR SCATTERING MATRICES 13

Now, (4.1) gives

A ([ ) < 5 N
— e dg < A2 (2] In A
Wi M\ W ™

/\72ﬁ > A"
== Y =(@[lA)"
26 n=N+1 n!

< /\72[8AN+1(| ln>\|)N+1 i z
; 26 n=N+1 n!
2
<e

o2
< >\N+1 25(“1,1/\|)N+1
\/_

The second to last inequality comes from the fact A|InA| < 1. Similarly, for
0 <n < N, one has

Y A im Y2y e 9in
E : 2Bz ,..2(j—n -n §
m /l & x J dx \/_|1H)\| /\J‘IH)\P( n)'

In A|

j=N+1 J=N+1
< 25}\N+1 2ﬁ‘ln)\’N+1Hn)\’ n
and, so
2| In Al s 2 1/2 o2 5 N
S, 2T p?0=m) dy < — AV (N Spl[In A~
Zl |j;ﬂj_n /.. A S S

. J/
-~

<IISly T <28y

_ 2*Sly
=~ /5
for ||S]|n := _max {S } and |In | > 2. Putting all this together gives

.....

>\N+1—2B| In A‘N-‘rl’

o2
v2p
To calculate the norm of " we proceed exactly as above. Differentiating (4.2)
gives

Il < (14 2[|S]lw) MY 27 In A

thale) = (a0 )= 3 PN +ZS (% i ””m)

Then, we readily compute
2

Il <

(&
14+ 2SI M) ANTI=28 In A Y.
< 5L+ 20Sl) [
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For the proof of Theorem 4.1 we shall introduce the following function spaces:
Wi = {u : e”u e H(0,00)}

for whole number [ and real number 5. Note that Wé is a Hilbert space when
equipped with the inner product that induces the norm

lullw = lle” ull 0,00

Fix A € R. Let us consider the following problem: for given (g, f) € C x W} find
(¢,v) € C x W such that u = ce™* 4 v satisfies

u' + Mg+ Du=f in(0,00),
{ u'(0) — vu(0) = g. (4:3)

The following well-posedness result holds:

Lemma 4.3. For each 8 # 0, there exists a Ay > 0 such that for all |\ < g,
problem (4.3) is uniquely solvable. Furthermore, one has

1, 0)llexwz < Kll(g, f)llexws, (4.4)
for some positive constant K that is independent of f and g.
To prove Lemma 4.3, we use the following result:

Proposition 4.4. Let f € W§, 8 # 0, then

v(x) = / f(t)dt
belongs to WBD.
Proof. 1t is sufficient to establish

/OOO e?he /;O f(t)dt

To that end, by Cauchy-Schwarz inequality

/:O f(t)dt 2 < (/:o PR (t) dt) (/;o e—ﬁtdt)

2 00
dz < %/0 e f2(z) da. (4.5)

and
&0 1
e Ptdt = —e P2,
[ o=
plus
/ Pt dt = / X0y (1) £2(2) dt
x 0
So,
oS 2 1 IS
| s < e | xeme o
x 0
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Then, multiplying both sides of the inequality by e*’* and integrating with respect

to z gives
2
o0 o0 1 oo o0
/ % / f(t)dt d:z:SB / e’ / Xjzoo) (1) £2(t) dtdz. (4.6)
0 z 0 0

By applying Fubini’s theorem to the RHS gives

/ / Xjzoo) (£)e” f2(t) dtdz = / / “Noo) (1) £2(1) dtda
// "oy ()7 f2(t) dzdt

:/O P2t )/0 X[,o0) (1) €7 dadt.

/ Xfr,oo) ()€ dar = / e’ dy = — (e — 1).
0 0 15}

Now,

Thus

/ /x[m ﬁtf()dtdx—/ (P = 1)etp2() at

2,Bt 2(¢ Bt 12
ﬁ/ £2(8) — P f2(1)) dt

B/ At 6/ s

< 3 / P2 (t) dt.
The last inequality follows from the fact that 1 fo P f2(t)dt > 0. Combining

this with (4.6) gives
2
[o¢] o0 1 o0
/ % / f)dt] dz < — / PP F2 (1) dt;
0 T 6 0
i.e. (4.5) holds. O
Proof of Lemma 4.3. Let Ly : C x W5 — C x W§ be given by the mapping

Li(c,v) = ((ce_i’\”"—i—v)’(O)—V(ce_i’\m—l—v)(O), (ce_i)‘x+v)"+)\2(1—|—q)(ce_i’\x+v)>.

Since ¢ is bounded then clearly Ly is a continuous operator. To prove the Lemma
it is equivalent to prove that IL, has a bounded inverse for small enough .

Step 1. Here we consider the case A = 0. We shall prove Ly is boundedly
invertible. Fix (g, f) € C x Wg. From Proposition 4.4, it follows that

=3Awémfmduw

belongs to W3 and solves v = f in (0, 00). Thus
(c,v), for c=v "' (0)—v(0)—vlg,
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satisfies
Lo(e,v) = (g, f);
Namely, L is surjective. Furthermore, by construction (cf. (4.5)), it follows that

e o)l < Cill(g, Pl (4.7)

for some C; > 0 independent of f.
It remains to show that L is injective. Suppose (¢, v) satisfies Lo(c, v) = (0, 0).
Then v” = 0 and v'(0) — v(c + v(0)) = 0; that is
v(x)=alz+v ) +ec
for some constant a. However, v will belong to W% only if a = ¢ = 0; that is L is

injective. Thus Ly ' exists, and from (4.7) it follows that the inverse is bounded;
indeed (4.7) can be rewritten as

H}Lalfumwg < Cl”(ga f)H(CXWg vg € vaf € W/g’) (48>

Step 2. Here we consider the case A # 0 but sufficiently small. First note that,
one has

La(c,v) — Lo(c,v) = ( —ide, N2qee ™™ + N3 (1 + q)v).
Therefore, since ¢ € C§°(0, R), for || < 1, one has

1L, v) = Lo(e: 0)llwgxe < [AIC2y /lel® + 10l (4.9)

for some (5 independent of ¢ and v. Now,
]L)\ = LO —|— LA — ]LO = (1 + (]L)\ — L())]Lal)]LO

Now, consider the operator T : C x W§ — C x W§ given by T':= (I, — L)L .
From, (4.9) and (4.8), one has

ITCg, Nllwg < INCCry /gl + 11 fIe Yo € C¥f € Wy,

consequently, ||T]| < 1 for |A\| < Ao := min{1,(C1Cy)""/?}. Thus, T has a
convergent Neumann series and in particular (1 — 7))~} exists and is bounded.
Consequently, Ly " exists, and is bounded, for |A| < A and is given by
Lyt =Lyt (1= (Ly — Lo)Lg ") .
0

Proof of Theorem 4.1. Fix A such that Proposition 4.2 and Lemma 4.3 holds; i.e.
|>\| < /\0 = min{)\l, )\2}
We compute
77</1/pp + )‘2(1 + q)napp - f)u
for

() = s () Do) = )]+ s () ) = a0

By construction X/(|hf_)\\) and XH(|1:,\|) are non-zero only for x € (|InA[,2]1n A|).

Consequently, from Proposition 4.2, it follows that
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1 . ANHI=28] Iy \[N+1
H|ln)\’2X”(|ln/\|) [771n(x) _nOUt(x)] HWg < CO ‘1ﬂ)\|2 5
and
/\N+172/5’ 111/\|N
/
|| | 1Il)\| ( ) [n1n< ) nout(‘r)] HWg S CO |11’l/\|
That is,
| £allwe < BCoAN =2 I AV (4.10)

Finally, notice that the difference r := 1y — 1, satisfies
r=ce ™+

for
N
c=5-Y A",
and some v € Wg Furthermore, 7 solves
N g+ 1) = fA in (0, 00),
r'(0) = vr(0) =

That is, (c,v) € Cx W} solves (4.3) for (g, f) = (0, —f1); therefore, from Lemma
4.3 (namely (4.4)) and (4.10) it follows that

(e, 0)||lexw < 3KCoAN 1728 1n AN
In particular, the desired inequality holds, indeed:

S — Z)\”

lc| < 3KCoAN 28| In AN

APPENDIX A. PICARD-LINDELOF THEOREM

Definition A.1 (Contraction mapping). Let (X, d) be a metric space. A function
T: X — X is a contraction mapping if Ic € (0, 1) such that V,y € X

d(T(x),T(y)) < cd(z,y).

Definition A.2 (Fixed point). Let 7': X — X be a function. A fized point of
T is a point € X such that T'(z) =

Theorem A.3 (Contraction mapping theorem). Let (X, d) be a non-empty com-
plete metric space and let T : X — X be a contraction mapping. Then T has a
unique fized point x € X, which satisfies x = lim,,_,oo x,, where x,11 = T (x,)
and xo € X is arbitrary.



18 ZHIYU WANG

Proof. Ezistence: Let xy € X and define the sequence {x,} recursively by x,,,1 =
T (x,). Let us first show that {z,} is a Cauchy sequence. Note that

d(zg,x1) =d(T (x1),T (x0)) < ed(xq,x0),

d(z3,15) = d(T (23),T (1)) < cd (29, 21) < *d (x1,0),
and by induction, Vn > 1,d (zp41,2,) < "d(x1,79). Now let m,n € N and
w.l.o.g. suppose m > n. Then

d(Tm,xn) < d(Tpm, Tm—1) + d (X1, Tm_2) + ... + d(Tpy1, Tp)
< " (2, 20) + " 2d (21, 10) + ... cd (21, T0)

m—1
=d(z1,x0) Z ¢
< d(xy1,x0) Zci 0.

Thus, {x,} is indeed Cauchy. Since X is complete, 3z € X such that z,, "= z.

Let us now show that z is a fixed point of 7. Note that T (z,,) "= T'(z) as
d(T (z,),T(x)) < cd (2, 2) "= 0.

Since T () = Tpy1, T () is just a subsequence of {x,} and hence T (z,,) "= .

By the uniqueness of limits, we conclude that T'(x) = x. Uniqueness: Suppose

that x,y are two fixed points of T" with z # y. Then

d(T(z), T(y)) < cd(z,y) = d(z,y) < cd(z,y) = 1 <,

contradicting the fact that 7" is a contraction mapping. Thus, the fixed point z
is unique. O

Theorem A.4 (Global Version of the Picard-Lindel6f Theorem). Let I := [a,b] C
R,z € I and yo € R, and f : I x R® — R" be a continuous function which
satisfies a global Lipschitz condition with respect to y as follows:

AL >0: Vexel, Vy,y€R": |[f(z,51) = f(x,92)lly < Lllyr — 2, -

Then the IVP
Y (z) = flz,y(x),  v(wo) =wo
has a unique solution y € C* (I — R™).

Proof. Transformation to an integral equation: If y € C' (I — R") is a
solution to the IVP, then the Fundamental Theorem of Calculus states

T

y(@) =yo + fty(t))ds = (T'(y))(z), =€l
s=x
Conversely, if y € C (I — R") is a solution to this integral equation, then (again
by the Fundamental Theorem of Calculus), the integral in the right-hand side is a
differentiable function of z, hence y € C' (I — R™), and we can differentiate this
integral equation to obtain the IVP. Hence, the IVP and this integral equation
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are equivalent.

Applying the Contraction Mapping Theorem: We choose U = C (I — R")
with the special norm

lulle := sup e EFDE=lfu(z)
zel
with L being the constant appearing in the Lipschitz condition. It can be shown
that (U, | - ||v) is complete and T': U — U is well defined. It remains to show T
is a contraction mapping.
First we note that

(T ~T@)a) = [ f(tule) - a0
and therefore we find

DI (T () = T(@) @) = e 4+

gf}mwm—fwmma

2

. max(x,zq)
< el [ ) - fe (o) d

min(z,xo)

max(z,xo)
< (LDl / Llu(t) —a(t)|» dt

min(z,z0)

max(z,z0)
<ty [ e i — sl a

min(z,x0) SHQZ_Z]”U
max(z,zo)
S ||U o ﬂ‘|U€_(L+1)|$_xO|L/ 6(L+1)\t—z0|dt
min(z,z0)
1

— — —(L+1)|$—ZO|L_ (L+1)|x—z0| _ 0

o e Lt o)

L _

< ol

This shows that 7' is a contraction mapping with constant ¢ = L/(L + 1) < 1.
Therefore, CMT implies that T" has exactly one fixed point y in U. 0
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