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1 Preliminaries on random variables

1.1 Basic quantities associated with random variables
1.2 Some classical inequalities

Exercise 1.2.2 (Generalization of integral identity). Prove the following extension of Lemma 1.2.1, which is valid for
any random variable X (not necessarily non-negative):

) 0
EX :/ P{X > t}dt —/ P{X < t}dt
0 —00

Attempted Solution 1.2.2. Write X = X1(x50y — (—=X1{x<o}) Where X1(x>¢} and (=X1{x¢}) are non-negative random
variables. Observe that o
1
EX = EX1(x>0} - E(—X1{x<0})

@ / P{X1(x50y > t}dt —/ P{-X1{x<0y > u}du
0 0

= / P{X > t}dt—/ P{X < —u}du
0 0

(4) ) 0
= / P{X > t}dt—/ P{X < t}dt.
0 —_

(1) linearity of expectation;
(2) Lemma 1.2.1;
(3) {X1yxs0y >t} ={X >t} and {-X1{x<o} > u} = {X < —u} as they are the same events respectively;

(4) change of variable t = —u in the second term.

Exercise 1.2.3 (p-moments via tails). Let X be a random variable and p € (0, o). Show that
E|X|? :/ ptPTIP{|X| > t}dt
0

whenever the right hand side is finite.
Hint: Use the integral identity for |X|? and change variables.

Attempted Solution 1.2.3. Observe that
p @ [T p
EBIX|P = P{IX|? > u} du
0
(i)/ P{|X| > t}ptP~dt.
0

(1) Lemma 1.2.1;
(2) change of variables u = t”.

Exercise 1.2.6. Deduce Chebyshev’s inequality by squaring both sides of the bound |X — p| > t and applying
Markov’s inequality.

Attempted Solution 1.2.6. Observe that

(1) 2 B(X —p)? o
PUX—pl 2t} S H{(X-p)* 2"} £ ——— =7

(1) squaring both sides of the bound |X — p| > t;

(2) Markov’s inequality.
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1.3 Limit theorems

Exercise 1.3.3. Let X1, Xy, ... be a sequence of i.i.d. random variables with mean y and finite variance. Show that

|
El= ) Xi—p
N

:@(\/Lﬁ) as N — oo.

Attempted Solution 1.3.3. Observe that

1 & 1 <
N;Xi_ll N;Xi_”

(1) definition of L! norm;

@

(2)
<

E

1 N
= NZXI—,U

i=1

L! L2
(2) IXIlzr < [IX|lq forany 0 < p < g < oo;
(3) Ex XNy Xi = % Nu=p;

(4) finite variance
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2 Concentration of sums of independent random variables

2.1 Why concentration inequalities?

Exercise 2.1.4 (Truncated normal distribution). Let g ~ /' (0,1). Show that for all t > 1, we have

1
=tz

EZ _ 1 —[2/2 P < 1
gl{g>t}_t'Ee +P{g >t < r+ - o

Hint: Integrate by parts.
Attempted Solution 2.1.4. Recall that the density of Y ~ .#7(0,1) is

fy) = ——e%.yer.

\/__
Note that f/(y) = —yf (y). We have
Eg*1(ger) = /thzf(X)dx
@ / T _xf (x)dx
@ (xf(x) / f(x)dx)

Q[ ped s

D pg> 1yt —e P

21

(6) 1 1 —tz/Z
< |t+ -] ——e .
( t) V2

(1) can be viewed as the definition of expectation of functions of a continuous random variable with density f. But
rigorously, it is really the corollary of the following proposition (Check the details if you care!):
Proposition. If 4 : R — R is Lebesgue integrable on (R, %, y1), then

Eh(X) = /Rh(t)dy(t).

Here % is the Borel o-algbera on R and p is the law of random variable X.
Corollary. If X has density f, then Eh(X) = /R h(t) f(t)dt and in particular EX = fR tf(t)dt.

(2) already checked;

(3) integration by parts with u = x and dv = f”(x)dx;
(4) limy oo xf(x) = 0;

(5) clear;

(6) upper bound in Proposition 2.1.2.

2.2 Hoeffding’s inequality

Exercise 2.2.3 (Bounding the hyperbolic cosine). Show that cosh(x) < exp (x?/2) for all x € R.
Hint: Compare the Taylor’s expansions of both sides.
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Attempted Solution 2.2.3. By the definition of the exponential function and hyperbolic cosine, we have

x2n

x? -
o ()= X
n

=0

h( ) . e¥+e™” _ i x™+ (—X)n odd terms vanish i 252"
cosh(x) = —— = — gl ST

n=0 n=0

It remains to check that (2n)! > 2"n! which follows easily from

1...n(n+1)---(2n) 21...n2...2.
——— ——— ——

—— e
same bigger same smaller

| Exercise 2.2.7. Prove Theorem 2.2.6, possibly with some absolute constant instead of 2 in the tail.
Attempted Solution 2.2.7.

Exercise 2.2.8 (Boosting randomized algorithms). Imagine we have an algorithm for solving some decision problem
(e.g. is a given number p a prime?). Suppose the algorithm makes a decision at random and returns the correct
answer with probability % + 6 with some § > 0, which is just a bit better than a random guess. To improve the
performance, we run the algorithm N times and take the majority vote. Show that, for any ¢ € (0, 1), the answer is
correct with probability at least 1 — ¢, as long as

N > ! 1 !
2 o in| 2]
Hint: Apply Hoeffding’s inequality for X; being the indicators of the wrong answers.

Attempted Solution 2.2.8.

Exercise 2.2.9 (Robust estimation of the mean). Suppose we want to estimate the mean p of a random variable X
from a sample Xj, . . ., Xy drawn independently from the distribution of X. We want an e-accurate estimate, i.e. one
that falls in the interval (u — &, p + ¢€). (a) Show that a sample ? of size N = O (¢/¢?) is sufficient to compute an
g-accurate estimate with probability at least 3/4, where o = Var X. Hint: Use the sample mean /i := % >N Xi. (b)
Show that a sample of size N = O (log (§7!) 0®/¢?) is sufficient to compute an e-accurate estimate with probability
at least 1 — §. Hint: Use the median of O (log (67!)) weak estimates from part 1.

Attempted Solution 2.2.9.

Exercise 2.2.10 (Small ball probabilities). Let Xj, ..., X be non-negative independent random variables with con-
tinuous distributions. Assume that the densities of X; are uniformly bounded by 1 . (a) Show that the MGF of X;
satisfies

1
Eexp (-tX;) < " forallt > 0.

(b) Deduce that, for any ¢ > 0, we have

N
P{ZXi < eN} < (ee)V.
i=1
Hint: Rewrite the inequality )’ X; < eN as ) (—X;/¢) > —N and proceed like in the proof of Hoeffding’s inequality.

Use part 1 to bound the MGF.

Attempted Solution 2.2.10.

2.3 Chernoff’s inequality

| Exercise 2.3.2 (Chernoff’s inequality: lower tails). Modify the proof of Theorem 2.3.1 to obtain the following bound



Attempted Solutions to Vershynin’s HDP Exercises Zhiyu Wang

on the lower tail. For any ¢ < u, we have
t
P{Sy <t} <e* (%) .

Attempted Solution 2.3.2.

Exercise 2.3.3 (Poisson tails). Let X ~ Pois(A). Show that for any ¢ > A, we have

P{X >t} <e? (%) .

Hint: Combine Chernoff’s inequality with Poisson limit theorem (Theorem 1.3.4).
Attempted Solution 2.3.3.

Exercise 2.3.5 (Chernoff’s inequality: small deviations). Show that, in the setting of Theorem 2.3.1, for § € (0, 1] we
have
2
P{|Sn — pl > Sp} < 2¢7°

where ¢ > 0 is an absolute constant. Hint: Apply Theorem 2.3.1 and Exercise 2.3.2 t = (1 = §)p and analyze the
bounds for small §.

Attempted Solution 2.3.5.

Exercise 2.3.6 (Poisson distribution near the mean). Let X ~ Pois(A). Show that for t € (0, A], we have
ct?
P{IX -A] =t} < 2exp -

Hint: Combine Exercise 2.3.5 with the Poisson limit theorem (Theorem 1.3.4).
Attempted Solution 2.3.6.

Exercise 2.3.8 (Normal approximation to Poisson). Let X ~ Pois(A). Show that, as A — oo, we have

X-2
—— — N(0,1) in distribution.

Vi

Hint: Derive this from the central limit theorem. Use the fact that the sum of independent Poisson distributions is
a Poisson distribution.

Attempted Solution 2.3.8.

2.4 Application: degrees of random graphs

Exercise 2.4.2 (Bounding the degrees of sparse graphs). Consider a random graph G ~ G(n, p) with expected de-
grees d = O(logn). Show that with high probability (say, 0.9 ), all vertices of G have degrees O(logn). Hint:
Modify the proof of Proposition 2.4.1.

Attempted Solution 2.4.2.

Exercise 2.4.3 (Bounding the degrees of very sparse graphs). Consider a random graph G ~ G(n, p) with expected
degrees d = O(1). Show that with high probability (say, 0.9), all vertices of G have degrees

( logn )
o|————].
loglogn

Exercise 2.4.4 (Sparse graphs are not almost regular). Consider a random graph G ~ G(n, p) with expected degrees
d = o(logn). Show that with high probability, (say, 0.9 ), G has a vertex with degree 310d. Hint: The principal
difficulty is that the degrees d; are not independent. To fix this, try to replace d; by some d; that are independent.
(Try to include not all vertices in the counting.) Then use Poisson approximation (2.9).

Attempted Solution 2.4.3.
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Attempted Solution 2.4.4.

Exercise 2.4.5 (Very sparse graphs are far from being regular). Consider a random graph G ~ G(n, p) with expected
degrees d = O(1). Show that with high probability, (say, 0.9 ), G has a vertex with degree

( logn )
Ql————|.
loglogn
Attempted Solution 2.4.5.

2.5 Sub-gaussian distributions

Exercise 2.5.1 (Moments of the normal distribution). Show that for each p > 1, the random variable X ~ 47(0, 1)
satisfies

B vp =T +p)/2) P
1X 110 = (EIX]?) ”—\/E[W] |

Deduce that
IX|lr = O(\/p) as p — oo,

Finally, a classical formula gives the moment generating function of X ~ 47(0,1) :

Eexp(1X) = /2 forall A € R.

Attempted Solution 2.5.1. Observe that

*® 1 x2
E|X|? = 2/ xP——e 7dx (symmetric)
0 Vo

_ p 1 V2 X
_2/ (2t)2 \/_\/_edt (t—z)

p—
et dr

oY o

o\

—
~
=
g

1
)
Taking pth roots of both sides gives the result. Now let us focus on the asymptotics whose details can be found here.

X has mgf
1 0 1.2
Eexp(AX) = —/ eXe X dx
p V27T —00

1 /°° (t 1 Z)d
= — ex X — =X X
V27[ —00 P 2

1 0 1., 9 1,
= — exp| —— (x° = 2tx +t°) + =t° |dz
\/_271./—00 2 )*3

Completing the square

_exp( )/ exp (——(x—t) )dx:etz/z.

Pdf of 4 (2,1)

I
o
NS
—
~~
|~:;
|
N—"

r

~

D=

| Exercise 2.5.4. Show that the condition EX = 0 is necessary for property (v) to hold.

Attempted Solution 2.5.4. Recall that Jensen’s inequality states that for any random variable X and a convex function
¢ : R — R, we have
¢(EX) < Eo(X).


https://math.stackexchange.com/questions/3771462/show-that-for-p-geq-1-gamma-fracp121-p-o-sqrtp-as-p-rig
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nse

J v)
Observe that exp(AEX) C"E exp(AX) < exp (KZA?). This implies that AEX < KZA%. Note that YA > 0, we have

-KZA < EX < KZA.
Since the choice of A is arbitrary, EX = 0.

Exercise 2.5.5 (On property iii in Proposition 2.5.2).  (a) Show that if X ~ //(0, 1), the function A - E exp (1°X?)
is only finite in some bounded neighborhood of zero.

(b) Suppose that some random variable X satisfies E exp (A2X?) < exp (KA?) for all A € R and some constant K.
Show that X is a bounded random variable, i.e. || X]|c < oo.

Attempted Solution 2.5.5.
(a) Observe that E [exp (AZXZ)] = \/%7 fR e **ex"/2 gx = \/%7 fR exp ((4% - %) x%) dx. Now note that this integral is
finite if and only if A2 — % < 0ifand only if A € (—%, %) It follows from the fact that fR e dx = \r.

(b) We want to show that X is almost surely bounded. Fix € > 0. Consider the probability that |X| > VK + ¢. We have

P{IX| 2 VK e} & B (e < 000

(2 inf (6,12(1(+5)Ee,12x2)
AeR

(;) inf ( A (Ke) emz)
AeR

= inf —A2%e
fnf ™)
=0.
(1) multiply both sides by A? and take the exponential;

(2) Markov’s inequality and optimize over A € R;

(3) assumption.
Thus,P{|X| > x/K+e} - 0. HenceP{|X| < x/K+e} —1 —P{|X| < x/K+e} -1

| Exercise 2.5.7. Check that || - ||y, is indeed a norm on the space of subgaussian random variables.
Attempted Solution 2.5.7.
| Exercise 2.5.9. Check that Poisson, exponential, Pareto and Cauchy distributions are not sub-gaussian.

Attempted Solution 2.5.9.

« If X ~ Posi(A), then
P{X >t} > P{X = [t]} = e AT /[£]1 = e 7228 /s

where s := [t] for simplicity. Stirling’s approximation gives s! ~ V2rs (g)s Hence

s! oms (2)° s2(8)° T s

N

e e e e (E)s
Taking the logarithm of the above RHS, we have
e—/l

* 1 s—00
log(— (E))=—/1+slog/1+s—slogs—Elogs+cszzcsz—slogs+@(s) — o0

st/2 | s

since the term cs? will dominate —s log s for any positive c as s — co. Hence the tail decay of Poisson distribution
is strictly slower than exp(—ct?) meaning that it is not sub-gaussian.
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« If X ~ Exp(A), then
P{X >t} = exp(-At)

which decays strictly slower than exp(—ct?) meaning that it is not sub-gaussian.
o If X ~ Pareto(a, 6), then
0
P{X >t} = (%) = exp(floga — flogt)
which decays strictly slower than exp(—ct?) meaning that it is not sub-gaussian.

« If X ~ Cauchy (g, 0), then E|X| = co. Since the first moment of X is not bounded by any constant, (ii) implies
that X is not sub-gaussian.

Exercise 2.5.10 (Maximum of sub-gaussians). Let Xj, X,, ..., be a sequence of sub-gaussian random variables, which
are not necessarily independent. Show that

|Xi]
Emax —— < CK,

i 1+logi

where K = max; ||X;l|y,. Deduce that for every N > 2 we have
Ema}gf( |Xi| < CK+/log N
i<

Hint: Denote Y; := X;/(CK+/1+logi) with absolute constant C chosen sufficiently large. Use subgaussian tail
bound (2.14)and then a union bound to conclude that P{3i : |Y;| > ¢} < e~!" for any t > 1. Use the integrated tail
formula (Lemma 1.2.1), breaking the integral into two integrals: one over [0, 1] (whose value should be trivial to
bound) and the other over [1, co ) (where you can use the tail bound obtained before).

Attempted Solution 2.5.10.

Exercise 2.5.11 (Lower bound). Show that the bound in Exercise 2.5.10 is sharp. Let X1, X, . .., X be independent
N (0, 1) random variables. Prove that

Eme}\);Xi > cy/log N.
i<

Attempted Solution 2.5.11.

2.6 General Hoeffding’s and Khintchine’s inequalities

2.7 Sub-exponential distributions

2.8 Bernstein’s inequality
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3 Random vectors in high dimensions

3.1 Concentration of the norm

3.2 Covariance matrices and principal component analysis

3.3 Examples of high-dimensional distributions

3.4 Sub-gaussian distributions in higher dimensions

3.5 Application: Grothendieck’s inequality and semidefinite programming
3.6 Application: Maximum cut for graphs

3.7 Kernel trick, and tightening of Grothendieck’s inequality
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4 Random matrices

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Preliminaries on matrices

Nets, covering numbers and packing numbers
Application: error correcting codes

Upper bounds on random sub-gaussian matrices
Application: community detection in networks
Two-sided bounds on sub-gaussian matrices

Application: covariance estimation and clustering

10
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5 Concentration without independence

5.1 Concentration of Lipschitz functions on the sphere
5.2 Concentration on other metric measure spaces

5.3 Application: Johnson-Lindenstrauss Lemma

5.4 Matrix Bernstein’s inequality

5.5 Application: community detection in sparse networks

5.6 Application: covariance estimation for general distributions

11



Attempted Solutions to Vershynin’s HDP Exercises

Zhiyu Wang

6 Quadratic forms, symmetrization and contraction

6.1
6.2
6.3
6.4
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Decoupling

Hanson-Wright Inequality

Concentration of anisotropic random vectors
Symmetrization

Random matrices with non-i.i.d. entries
Application: matrix completion

Contraction Principle
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7.3
7.4
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Slepian’s inequality

Sharp bounds on Gaussian matrices
Sudakov’s minoration inequality

Gaussian width

Stable dimension, stable rank, and Gaussian complexity

Random projections of sets
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8 Chaining
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Application: statistical learning theory

Generic chaining

Talagrand’s majorizing measure and comparison theorems

Chevet’s inequality

14



Attempted Solutions to Vershynin’s HDP Exercises Zhiyu Wang

9 Deviations of random matrices and geometric consequences

9.1 Matrix deviation inequality
9.2 Random matrices, random projections and covariance estimation
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9.4 Random sections: M* bound and Escape Theorem
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10 Sparse Recovery

10.1
10.2
10.3
10.4
10.5
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High-dimensional signal recovery problems

Signal recovery based on M* bound

Recovery of sparse signals

Low-rank matrix recovery

Exact recovery and the restricted isometry property

Lasso algorithm for sparse regression
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11 Dvoretzky-Milman’s Theorem

11.1 Deviations of random matrices with respect to general norms
11.2 Johnson-Lindenstrauss embeddings and sharper Chevet inequality

11.3 Dvoretzky-Milman’s Theorem
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