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1 Basic counting: sets and tuples

If 𝑋 is a set then |𝑋 | is the size or cardinality of 𝑋 . Most of the sets we will encounter in this course will be finite
(with the frequent exception of the natural numbers N = {1, 2, 3, . . .} ). Our "canonical" set of size 𝑛 (where 𝑛 ∈ N )
is denoted by [𝑛] := {1, 2, . . . , 𝑛}.
The empty set is denoted ∅. If 𝐴 and 𝐵 are sets, then 𝐴 is a subset of 𝐵 if every element of 𝐴 is also an element of 𝐵.
We denote this by 𝐴 ⊆ 𝐵.
If 𝐴 and 𝐵 are sets, then their union is 𝐴 ∪ 𝐵 = {𝑥 | 𝑥 ∈ 𝐴 or 𝑥 ∈ 𝐵} and their intersection is 𝐴 ∩ 𝐵 = {𝑥 | 𝑥 ∈ 𝐴
and 𝑥 ∈ 𝐵}. The set difference of 𝐴 and 𝐵 is 𝐴\𝐵 = {𝑥 | 𝑥 ∈ 𝐴 and 𝑥 ∉ 𝐵}. The symmetric difference of 𝐴 and 𝐵 is
𝐴Δ𝐵 = (𝐴\𝐵) ∪ (𝐵\𝐴) = (𝐴 ∪ 𝐵)\(𝐴 ∩ 𝐵).
If 𝐴 and 𝐵 are sets, then their cartesian product is 𝐴 × 𝐵 = {(𝑎, 𝑏) | 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵}.
If 𝐴 and 𝐵 are sets such that 𝐴 ∩ 𝐵 = ∅, then we say 𝐴 and 𝐵 are disjoint. If we have a union of two disjoint sets, we
emphasize this by writing 𝐴 ¤∪𝐵. If 𝐴1, 𝐴2, . . . , 𝐴𝑛 are sets, then we say they are pairwise disjoint if 𝐴𝑖 ∩𝐴 𝑗 = ∅ for all
1 ≤ 𝑖 < 𝑗 ≤ 𝑛.

Lemma 1.1. Let 𝐴 and 𝐵 be finite sets. Then

(i) |𝐴\𝐵 | = |𝐴| − |𝐴 ∩ 𝐵 |;

(ii) |𝐴 ∪ 𝐵 | = |𝐴| + |𝐵 | − |𝐴 ∩ 𝐵 |;

(iii) |𝐴 × 𝐵 | = |𝐴| · |𝐵 |;

(iv) If 𝐴1, 𝐴2, . . . , 𝐴𝑛 are pairwise disjoint sets, then����� 𝑛⋃
𝑖=1

𝐴𝑖

����� = 𝑛∑︁
𝑖=1

|𝐴𝑖 | ;

(v) If 𝐴1, 𝐴2, . . . , 𝐴𝑛 are sets, then ����� 𝑛⋃
𝑖=1

𝐴𝑖

����� ≤ 𝑛∑︁
𝑖=1

|𝐴𝑖 | .

Proof. Omitted. □

Remark 1.2. The so-called sum rule holds for disjoint sets: if 𝐴 and 𝐵 are disjoint sets, then |𝐴 ∪ 𝐵 | = |𝐴| + |𝐵 |.
This follows from lemma 1.1.

For any integer 𝑘 ≥ 1, we define 𝑘 factorial to be 𝑘! = 𝑘 (𝑘 − 1) · · · 2 · 1. We define 0! = 1. For integers 𝑛 ≥ 𝑘 ≥ 1, we
define the 𝑘-th falling factorial of 𝑛 by (𝑛)𝑘 = 𝑛(𝑛 − 1) · · · (𝑛 − 𝑘 + 1). So (𝑘)𝑘 = 𝑘!.
Let 𝑋 be a set. A 𝑘-tuple of elements from 𝑋 is (𝑥1, 𝑥2, . . . , 𝑥𝑘 ) where 𝑥𝑖 ∈ 𝑋 for 1 ≤ 𝑖 ≤ 𝑘 . Note that the elements of
a 𝑘-tuple need not be distinct. We will denote the set of 𝑘-tuples from 𝑋 by 𝑋𝑘 .
Let 𝑋 be a set. A 𝑘-tuple of distinct elements from 𝑋 is (𝑥1, 𝑥2, . . . , 𝑥𝑘 ) where 𝑥𝑖 ∈ 𝑋 for 1 ≤ 𝑖 ≤ 𝑘 and 𝑥𝑖 ≠ 𝑥 𝑗 for
𝑖 ≠ 𝑗 . We will denote the set of 𝑘-tuples of distinct elements from 𝑋 by (𝑋 )𝑘 .
If 𝑋 is a set of size 𝑛 and 0 ≤ 𝑘 ≤ 𝑛, then the family of 𝑘-sets from 𝑋 is(

𝑋

𝑘

)
= {𝐴 ⊆ 𝑋 : |𝐴| = 𝑘}.

Let 0 ≤ 𝑘 ≤ 𝑛 be integers. Recalling that 0! = 1 and we define the binomial coefficient by(
𝑛

𝑘

)
=

𝑛!
𝑘!(𝑛 − 𝑘)! =

(𝑛)𝑘
𝑘! .

If 𝑋 is a set, then the power set of 𝑋 is the family of all subsets of 𝑋 :
𝒫(𝑋 ) = {𝐴 | 𝐴 ⊆ 𝑋 }.

Often we work with subsets of a given "universal set" 𝑋 . In this case we can define the complement of a set 𝐴 ⊆ 𝑋

by 𝐴𝑐 = 𝑋\𝐴.
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Lemma 1.3. Let 1 ≤ 𝑘 ≤ 𝑛 be integers and 𝑋 be a set of size 𝑛. Then

1. There are 𝑛𝑘 different 𝑘-tuples of elements from 𝑋 , so
��𝑋𝑘

�� = 𝑛𝑘 ;
2. There are 𝑛(𝑛 − 1) · · · (𝑛 − 𝑘 + 1) different 𝑘-tuples of distinct elements from 𝑋 , so | (𝑋 )𝑘 | = (𝑛)𝑘 ;

3. There are 𝑛! distinct permutations of the elements of 𝑋 ;

4. There are
(
𝑛
𝑘

)
distinct 𝑘-sets from 𝑋 , so

��� (𝑋𝑘 ) ��� = (
𝑛
𝑘

)
;

5.
(
𝑛
𝑘

)
=

(
𝑛

𝑛−𝑘
)
;

6.
(
𝑛+1
𝑘

)
=

(
𝑛
𝑘

)
+

(
𝑛

𝑘−1
)
;

7. |𝒫(𝑋 ) | = 2𝑛 .

Proof. Omitted. □

2



Notes on Graph Theory Zhiyu Wang

2 Graphs

2.1 Basic definitions

Definition 2.1 (Graph, vertex, edge, order, size). A graph is a pair (𝑉 , 𝐸) of sets with 𝐸 ⊆
(
𝑉
2
)
. An element of𝑉

is a vertex and an element of 𝐸 is an edge. We denote the set of vertices and the set of edges of a graph𝐺 by𝑉 (𝐺)
and 𝐸 (𝐺) respectively. The order of a graph𝐺 is the number of vertices |𝑉 (𝐺) |. The size of a graph is the number
of edges |𝐸 (𝐺) |.

Definition 2.2 (Neighbourhood, degree). If𝐺 is a graph and 𝑣 ∈ 𝑉 (𝐺), then the neighbourhood (or 𝑛𝑏ℎ𝑑) of 𝑣
is the set

Γ(𝑣) = {𝑢 ∈ 𝑉 (𝐺) | 𝑢𝑣 ∈ 𝐸 (𝐺)}.

The degree of a vertex 𝑣 ∈ 𝑉 is the size of its neighbourhood: 𝑑 (𝑣) = |Γ(𝑣) |.

Remark 2.3. Beware of other different definitions of graphs! All the graphs in this course will be simple, loopless,
and undirected. To be precise, a graph is simple if it cannot have multiple edges between two vertices; a graph
is loopless if every edge contains exactly two different vertices; a graph is undirected if its edges are 2-sets such
as {𝑢, 𝑣} rather than ordered pairs such as (𝑢, 𝑣) or (𝑣,𝑢). Note that our definition of a graph as 𝐺 = (𝑉 , 𝐸) with
𝐸 ⊆

(
𝑉
2
)
implies immediately that our graphs are simple, loopless and undirected.

𝑢 𝑤

𝑣

Figure 1. A directed graph

directed

directed

𝑠

𝑣1

𝑣2

𝑣3

𝑡

Figure 2. An undirected graph
which is not loopless and not
simple

not loopless

not simple

Remark 2.4. If 𝑒 = {𝑢, 𝑣} is an edge in a graph 𝐺 then we will often write this as 𝑒 = 𝑢𝑣 . Note that this does not
imply that the edge has a direction (our graphs are undirected).

Definition 2.5 (Incident). If 𝑒 = 𝑢𝑣 is an edge, then 𝑒 is incident to 𝑢 and 𝑣 .

Definition 2.6 (𝑟 -regular). A graph 𝐺 is 𝑟 -regular if 𝑑 (𝑣) = 𝑟 for all 𝑣 ∈ 𝑉 (𝐺).

3
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Definition 2.7 (Degree sequence). The degree sequence of a graph 𝐺 = (𝑉 , 𝐸) is the tuple

(𝑑 (𝑣1) , 𝑑 (𝑣2) , . . . , 𝑑 (𝑣𝑛)) ,

where 𝑉 = {𝑣1, . . . , 𝑣𝑛} and 𝑑 (𝑣1) ≤ 𝑑 (𝑣2) ≤ · · · ≤ 𝑑 (𝑣𝑛).

Lemma 2.8 (Handshake Lemma). For any graph 𝐺 = (𝑉 , 𝐸),∑︁
𝑣∈𝑉

𝑑 (𝑣) = 2|𝐸 |.

Proof. Omitted. □

Lemma 2.9. In any graph, the number of vertices of odd degree is even.

Proof. Omitted. □

2.2 Examples of graphs

Recall that for 𝑛 ∈ N we define [𝑛] = {1, 2, . . . , 𝑛}.

Definition 2.10 (Complete graph). 𝐾𝑛 is the complete graph of order 𝑛 ≥ 1 where

𝑉 (𝐾𝑛) = [𝑛], 𝐸 (𝐾𝑛) =
(
[𝑛]
2

)
.

1

2

3

4

5

Figure 3. The complete graph
of order 5, 𝐾5

Definition 2.11 (Empty graph). 𝐸𝑛 is the empty graph of order 𝑛 ≥ 1 where

𝑉 (𝐸𝑛) = [𝑛], 𝐸 (𝐸𝑛) = ∅.

1 2

3

Figure 4. The empty graph of order 3, 𝐸3

Definition 2.12 (Cycle). 𝐶𝑛 is the cycle of length 𝑛 ≥ 3 where

𝑉 (𝐶𝑛) = [𝑛], 𝐸 (𝐶𝑛) = {{𝑖, 𝑖 + 1} | 𝑖 = 1, 2, . . . , 𝑛 − 1} ∪ {{1, 𝑛}}.

4
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1 2

34

Figure 5. The cycle of order 4, 𝐶4

Definition 2.13 (Path). 𝑃𝑛 is the path of length 𝑛 ≥ 1 (with 𝑛 edges and 𝑛 + 1 vertices) where

𝑉 (𝑃𝑛) = {0, 1, 2, . . . , 𝑛}, 𝐸 (𝑃𝑛) = {{𝑖 − 1, 𝑖} | 𝑖 ∈ [𝑛]}.

0 1

23

Figure 6. The path of length 4, 𝑃4

Definition 2.14 (Complete bipartite graph). 𝐾𝑎,𝑏 is the complete bipartite graph with classes of size 𝑎 and 𝑏
(𝑎, 𝑏 ≥ 1) where

𝑉
(
𝐾𝑎,𝑏

)
= {1, 2, . . . , 𝑎} ¤∪{𝑎 + 1, 𝑎 + 2, . . . , 𝑎 + 𝑏},

𝐸
(
𝐾𝑎,𝑏

)
= {{𝑖, 𝑗} | 1 ≤ 𝑖 ≤ 𝑎, 𝑎 + 1 ≤ 𝑗 ≤ 𝑎 + 𝑏}.

2

1

5

4

3

Figure 7. The complete bipartite graph with classes of size 2 and 3, 𝐾2,3

Definition 2.15 (Discrete hypercube). 𝑄𝑛 is the discrete hypercube of dimension 𝑛 ≥ 1 where

𝑉 (𝑄𝑛) = {0, 1}𝑛, 𝐸 (𝑄𝑛) = {𝑥𝑦 | 𝑥 and 𝑦 differ in exactly one coordinate}.

(0,0,0)

(0,0,1)

(0,1,0)

(0,1,1)

(1,0,0)

(1,0,1)

(1,1,0)

(1,1,1)

Figure 8. The discrete hypercube of dimension 3, 𝑄3
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Remark 2.16. Consider the following graph 𝐺 = (𝑉 , 𝐸) where 𝑉 = {2, 3, 4} and 𝐸 =
(
𝑉
2
)
.

2 3

4

Figure 9. The ‘complete’ graph of order 3

Is 𝐺 the complete graph of order 3, 𝐾3? Strictly speaking, no since 𝑉 ≠ {1, 2, 3}. In fact, 𝐺 is isomorphic to 𝐾3 and
we write 𝐺 � 𝐾3 (see later). This uniqueness property justifies the word ‘the’ in our definitions of frequently used
graphs. However, for convenience, we often say that 𝐺 is complete by which we actually mean 𝐺 � 𝐾3.

6



Examples of graphs

Graphs Notation Specifics Vertices Edges
Complete graph 𝐾𝑛 𝑛 ≥ 1 𝑉 (𝐾𝑛) = [𝑛] 𝐸 (𝐾𝑛) =

([𝑛]
2
)

Empty graph 𝐸𝑛 𝑛 ≥ 1 𝑉 (𝐸𝑛) = [𝑛] 𝐸 (𝐸𝑛) = ∅
Cycle 𝐶𝑛 𝑛 ≥ 3 𝑉 (𝐶𝑛) = [𝑛] 𝐸 (𝐶𝑛) = {{𝑖, 𝑖 + 1} | 𝑖 = 1, 2, . . . , 𝑛 − 1} ∪ {{1, 𝑛}}
Path 𝑃𝑛 𝑛 ≥ 1 𝑉 (𝑃𝑛) = {0, 1, 2, . . . , 𝑛} 𝐸 (𝑃𝑛) = {{𝑖 − 1, 𝑖} | 𝑖 ∈ [𝑛]}

Complete bipartite
graph 𝐾𝑎,𝑏

classes of size
𝑎 and 𝑏, (𝑎, 𝑏 ≥ 1) 𝑉

(
𝐾𝑎,𝑏

)
= {1, 2, . . . , 𝑎} ¤∪{𝑎 + 1, 𝑎 + 2, . . . , 𝑎 + 𝑏} 𝐸

(
𝐾𝑎,𝑏

)
= {{𝑖, 𝑗} | 1 ≤ 𝑖 ≤ 𝑎, 𝑎 + 1 ≤ 𝑗 ≤ 𝑎 + 𝑏}

Discrete hypercube 𝑄𝑛 𝑛 ≥ 1 𝑉 (𝑄𝑛) = {0, 1}𝑛 𝐸 (𝑄𝑛) = {𝑥𝑦 | 𝑥 and 𝑦 differ in exactly one coordinate }

Graphs Order Size Bipartite Longest path
Complete graph 𝑛

(
𝑛
2
)

𝑛 = 1, 2 𝑛 − 1
Empty graph 𝑛 0 ∀𝑛 0

Cycle 𝑛 𝑛 𝑛 is even 𝑛 − 1
Path 𝑛 + 1 𝑛 ∀𝑛 (no odd cycle) 𝑛

Complete bipartite graph 𝑎 + 𝑏 𝑎𝑏 N/A 2𝑏 − 1 if 𝑎 = 𝑏

2𝑏 if 𝑎 > 𝑏

Discrete hypercube 2𝑛 𝑛2𝑛−1 ∀𝑛 2𝑛 − 1
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2.3 Subgraphs and isomorphisms

Definition 2.17 (Subgraph). If 𝐺 and 𝐻 are graphs satisfying 𝑉 (𝐻 ) ⊆ 𝑉 (𝐺) and 𝐸 (𝐻 ) ⊆ 𝐸 (𝐺), then 𝐻 is a
subgraph of 𝐺 .

Definition 2.18 (Induced subgraph). A subgraph 𝐻 of𝐺 is an induced subgraph of𝐺 if 𝐸 (𝐻 ) = 𝐸 (𝐺) ∩
(
𝑉 (𝐻 )

2
)
.

If 𝐺 = (𝑉 , 𝐸) is a graph and 𝐴 ⊆ 𝑉 , then 𝐺 [𝐴] is the subgraph induced by 𝐴 : its vertex set is 𝑉 (𝐺 [𝐴]) = 𝐴 and
edge set is 𝐸 (𝐺 [𝐴]) = 𝐸 (𝐺) ∩

(
𝐴
2
)
.

Definition 2.19 (Isomorphic, copy). Graphs 𝐺 and 𝐻 are isomorphic iff there is a bijection 𝑓 : 𝑉 (𝐺) → 𝑉 (𝐻 )
such that 𝑣𝑤 ∈ 𝐸 (𝐺) ⇐⇒ 𝑓 (𝑣) 𝑓 (𝑤) ∈ 𝐸 (𝐻 ). If 𝐺 and 𝐻 are isomorphic we denote this by 𝐺 � 𝐻 . 𝐺 contains a
copy of 𝐻 if 𝐺 has a subgraph isomorphic to 𝐻 .

2.4 Walks, paths, and connectedness

Definition 2.20 (Walk, closed). A walk in 𝐺 is a sequence of vertices (not necessarily distinct) 𝑣0𝑣1 · · · 𝑣𝑡 such
that 𝑣𝑖−1𝑣𝑖 ∈ 𝐸 for all 1 ≤ 𝑖 ≤ 𝑡 . A walk is closed if 𝑣0 = 𝑣𝑡 .

Definition 2.21 (Tour). A walk in which no edge is used more than once is a tour.

Remark 2.22. A tour can have repeated vertices but cannot have repeated edges. A path cannot have repeated
vertices and hence cannot have repeated edges either.

Lemma 2.23. Define the relation ∼ on 𝑉 (𝐺) by 𝑣 ∼ 𝑤 iff there is a walk from 𝑣 to 𝑤 in 𝐺 . Then ∼ is an equivalence
relation.

Proof. Omitted. □

Definition 2.24 (Component, connected). Let𝑉 = 𝑉1 ∪𝑉2 ∪ · · · ∪𝑉𝑘 be the partition of𝑉 induced by ∼. We call
the equivalence classes 𝑉𝑖 components. 𝐺 is connected if it consists of a single component.

Definition 2.25 (Path in a graph, 𝑥-𝑦 path). A path in a graph𝐺 is a subgraph isomorphic to 𝑃𝑡 for some 𝑡 ≥ 0.
So it consists of a sequence of distinct vertices 𝑣0𝑣1 · · · 𝑣𝑡 such that 𝑣𝑖−1𝑣𝑖 is an edge for 1 ≤ 𝑖 ≤ 𝑡 . If 𝑥,𝑦 ∈ 𝑉 (𝐺),
then an 𝑥-𝑦 path in 𝐺 is a path that starts at 𝑥 and ends at 𝑦.

Lemma 2.26. There is an 𝑥-𝑦 path in 𝐺 iff there is a walk from 𝑥 to 𝑦 in 𝐺 .

Proof. Omitted. □

Lemma 2.27. Let 𝑃 = 𝑥1𝑥2 . . . 𝑥𝑡 be a path in a graph 𝐺 . If 𝑃 is a shortest 𝑥1-𝑥𝑡 path in 𝐺 , then 𝑥1𝑥2 · · · 𝑥𝑖 and
𝑥𝑖𝑥𝑖+1 · · · 𝑥𝑡 are shortest 𝑥1-𝑥𝑖 and 𝑥𝑖-𝑥𝑡 paths in 𝐺 for each 1 ≤ 𝑖 ≤ 𝑡 .

Proof. Omitted. □

2.5 Euler circuits

Definition 2.28 (Euler circuit). An Euler circuit in a graph𝐺 is a closed tour 𝑣0𝑣1 · · · 𝑣𝑡𝑣0 containing all edges of
𝐺 .

Remark 2.29. Since an Euler circuit contains all edges, it also contains all vertices. The vertices may be repeated
but each edge is used exactly once.

8
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Theorem 2.30 (Euler 1736). A graph 𝐺 has an Euler circuit iff 𝐺 is connected and every vertex has even degree.

Proof. Omitted. □

2.6 Bipartite graphs

Definition 2.31 (Bipartite graph). A graph 𝐺 is bipartite if

𝑉 (𝐺) = 𝐴 ¤∪𝐵 and 𝐸 (𝐺) = {𝑎𝑏 | 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵}.

We say that 𝐴, 𝐵 is a bipartition and sometimes write 𝐺 = (𝐴, 𝐵;𝐸) to emphasise this.

Theorem 2.32. A graph is bipartite iff it contains no odd cycle.

Proof. Omitted. □

2.7 Graph colouring

Definition 2.33 (Independent set). Let𝐺 be a graph. 𝐴 ⊆ 𝑉 (𝐺) is an independent set if there are no edges with
both endpoints in 𝐴.

Definition 2.34 (𝑘-colouring). Let 𝑘 ∈ N. A 𝑘-colouring of a graph 𝐺 is a function 𝑐 : 𝑉 (𝐺) → [𝑘] such that if
𝑣𝑤 ∈ 𝐸, then 𝑐 (𝑣) ≠ 𝑐 (𝑤).

Definition 2.35 (𝑘-colourable). A graph 𝐺 is 𝑘-colourable if 𝐺 has a 𝑘-colouring.

Remark 2.36. It follows that if a graph 𝐺 is 𝑘-colourable, then 𝐺 is also 𝑘 + 1-colourable. Note that a graph is
bipartite iff it is 2-colourable.

Definition 2.37 (𝑘-partite graph). A graph𝐺 is 𝑘-partite if there is a partition𝑉 (𝐺) = 𝑉1 ∪𝑉2 ∪ · · · ∪𝑉𝑘 of𝑉 (𝐺)
into independent sets.

Remark 2.38. Note that a graph is 𝑘-partite iff it is 𝑘-colourable.

Definition 2.39 (Chromatic number). The chromatic number of a graph 𝐺 is the number

𝜒 (𝐺) = min{𝑘 ≥ 1 | 𝐺 is 𝑘-colourable }.

Remark 2.40. A useful fact: If 𝐻 is a subgraph of 𝐺 , then 𝜒 (𝐻 ) ≤ 𝜒 (𝐺).

Note that for any 𝑡 ∈ N we have 𝜒 (𝐾𝑡 ) = 𝑡, 𝜒 (𝐶2𝑡 ) = 2 and 𝜒 (𝐶2𝑡+1) = 3.

Definition 2.41 (Maximum degree). Themaximum degree of a graph 𝐺 is the number

Δ(𝐺) = max{𝑑 (𝑣) | 𝑣 ∈ 𝑉 (𝐺)}.

Theorem 2.42. If 𝐺 is a graph, then
𝜒 (𝐺) ≤ Δ(𝐺) + 1

Proof. Omitted. □
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3 The probabilistic method

3.1 Basics

Definition 3.1 (Probability space). A probability space is a pair (Ω, P), where Ω is a (finite) set of elementary
events (e.g. {Heads, Tails} or {1, 2, 3, 4, 5, 6}) and P : Ω → [0, 1] is a function such that

∑
𝜔∈Ω P[𝜔] = 1.

Definition 3.2 (Event). Any subset 𝐴 ⊆ Ω is an event and we define its probability to be P[𝐴] = ∑
𝜔∈𝐴 P[𝜔].

Theorem3.3 (TheProbabilisticMethod). If (Ω, P) is a probability space and𝐴 ⊆ Ω is an event satisfying P[𝐴] > 0,
then 𝐴 ≠ ∅.

Proof. Omitted. □

Note that 𝐴 ∪ 𝐵 and 𝐴 ∩ 𝐵 denote the events " 𝐴 or 𝐵 " and " 𝐴 and 𝐵 " respectively. Another very simple but useful
result is the probabilistic union bound.

Lemma 3.4 (The union bound). If (Ω, P) is a finite probability space and we have events 𝐴1, . . . , 𝐴𝑛 ⊆ Ω, then

P

[
𝑛⋃
𝑖=1

𝐴𝑖

]
≤

𝑛∑︁
𝑖=1

P [𝐴𝑖] .

Proof. Omitted. □

Definition 3.5 (Random variable). A random variable is a function 𝑋 : Ω → R. We say a random variable is
non-negative if for all 𝜔 ∈ Ω, we have 𝑋 (𝜔) ≥ 0.

Example 3.6. If our probability space is ({1, 2, 3, 4, 5, 6}, P𝑈 ), where P𝑈 [𝜔] = 1/6 for all 𝜔 ∈ [6] (i.e. the space
associated with a single fair roll of a die), then we could define the random variables 𝑋1 and 𝑋2 by

𝑋1(𝜔) =
{
1, 𝜔 = 1, 3, 5
0, otherwise

and

𝑋2(𝜔) =
{
1, 𝜔 ≥ 4
0, otherwise.

Note that both of these random variables are examples of indicator random variables. More generally the indi-
cator random variable of an event 𝐴 ⊆ Ω is

1𝐴 (𝜔) =
{
1, 𝜔 ∈ 𝐴
0, otherwise.

So 𝑋1 is the indicator random variable of "the die roll is odd", while 𝑋2 is the indicator random variable of "the die
roll is at least 4 ".

Definition 3.7 (Expectation). The expectation of a random variable is simply its average value:

E[𝑋 ] =
∑︁
𝜔∈Ω

𝑋 (𝜔)P[𝜔] =
∑︁
𝑎∈R

𝑎P[𝑋 = 𝑎] .

Theorem 3.8 (The first moment method). Let (Ω, P) be a finite probability space. If 𝑋 is a random variable on

10
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(Ω, P), then there exist 𝜔1, 𝜔2 ∈ Ω such that

𝑋 (𝜔1) ≤ E[𝑋 ] ≤ 𝑋 (𝜔2) .

Proof. Omitted. □

Lemma 3.9 (Linearity of Expectation). If 𝑋1, 𝑋2, . . . , 𝑋𝑛 are random variables on (Ω, P), then

E

[
𝑛∑︁
𝑖=1

𝑋𝑖

]
=

𝑛∑︁
𝑖=1

E [𝑋𝑖] .

Proof. Omitted. □

Note that linearity of expectation has nothing to do with independence (which we will define now).

Definition 3.10 (Independence of events, random variables). Let (Ω, P) be a probability space. Events
𝐴1, . . . , 𝐴𝑛 ⊂ Ω are independent if for any 1 ≤ 𝑘 ≤ 𝑛 of the events, the probability they all hold is the prod-
uct of their probabilities i.e. for any 1 ≤ 𝑘 ≤ 𝑛 and any {𝑚1, . . . ,𝑚𝑘 } ∈

([𝑛]
𝑘

)
P

[
𝑘⋂
𝑖=1

𝐴𝑚𝑖

]
=

𝑘∏
𝑖=1

P
[
𝐴𝑚𝑖

]
.

Random variables 𝑋,𝑌 on the same probability space are independent if for all 𝑎, 𝑏 ∈ R, the events 𝑋 = 𝑎 and
𝑌 = 𝑏 are independent.

Our first simple application of probability in graph theory is the following result.

Proposition 3.11. If𝐺 is a graph of order 𝑛 and size 𝑒 , then𝐺 contains a bipartite subgraph with at least ⌈𝑒/2⌉ edges.

Proof. Omitted. □

3.2 Random graphs

The probability space for graphs that we will consider is 𝒢(𝑛, 𝑝) : the space of Erdös-Renyi random graphs. The
underlying set of outcomes is the set of all labelled graphs of order 𝑛 :

Ω =

{
𝐺 | 𝑉 (𝐺) = [𝑛], 𝐸 (𝐺) ⊆

(
[𝑛]
2

)}
.

For a graph 𝐻 ∈ Ω, the probability of the outcome 𝐻 which is defined to be P[𝐻 ] is the probability that the following
random process produces the graph 𝐻 :

1. Start with 𝐻 = 𝐸𝑛 the empty graph with vertex set [𝑛] and no edges;

2. For each pair of vertices 𝑖 𝑗 ∈
([𝑛]
2
)
, toss a biased coin𝐶𝑖 𝑗 that has probability 𝑝 of being ‘Heads’ and 1 − 𝑝 of

being ‘Tails’. If 𝐶𝑖 𝑗 is ‘Heads’ then insert the edge 𝑖 𝑗 , otherwise do not insert the edge 𝑖 𝑗 . All coin tosses are
independent.

Note that unless 𝑝 ∈ {0, 1}, every possible graph 𝐻 ∈ Ω has non-zero probability of occuring.

3.3 Large girth and large chromatic number

Definition 3.12 (Girth). The girth of a graph 𝐺 is the length of the shortest cycle in 𝐺 . We denote this by 𝑔(𝐺).
If 𝐺 contains no cycles, then we define 𝑔(𝐺) = +∞.

11
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Definition 3.13 (Independence number). The independence number of a graph 𝐺 is the number

𝛼 (𝐺) = max{|𝐴| | 𝐴 ⊆ 𝑉 (𝐺) is an independent set }.

Theorem 3.14 (Erdös 1959). For all 𝑘, 𝑙 ≥ 3, there exists a graph 𝐺 with 𝜒 (𝐺) ≥ 𝑘 and 𝑔(𝐺) ≥ 𝑙 .

Proof. Omitted. □

Lemma 3.15. For any graph 𝐺 of order 𝑛, we have

𝜒 (𝐺) ≥ 𝑛

𝛼 (𝐺) .

Proof. Omitted. □

Lemma 3.16. Let 𝐺 ∈ 𝒢(𝑛, 𝑝) and let 𝑋𝑡 be the number of 𝑡-cycles in 𝐺 . Then

E [𝑋𝑡 ] =
𝑛(𝑛 − 1) (𝑛 − 2) · · · (𝑛 − 𝑡 + 1)

2𝑡 𝑝𝑡 .

Proof. Omitted. □

Lemma 3.17 (Markov’s inequality). If 𝑋 is a non-negative random variable and 𝜆 > 0, then

P[𝑋 ≥ 𝜆] ≤ E[𝑋 ]
𝜆

.

Proof. Omitted. □
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4 Extremal graph theory

4.1 Hamilton cycles

Definition 4.1 (Hamilton cycle). A Hamilton cycle in a graph 𝐺 is a cycle containing all the vertices of 𝐺 .

Note that this is a rather different object to an Euler circuit (a closed tour containing all edges of a given graph). Whereas
we can view an Euler circuit as a sightseeing tour of a city which must pass along each road exactly once, a Hamilton
cycle can be seen as the itinerary of a travelling salesman who wishes to visit every city exactly once, starting and
finishing at home.
The question of whether a given graph𝐺 contains an Euler circuit has, as we saw a simple characterisation: 𝐺 contains
an Euler circuit iff it is connected and all vertices have even degree. The corresponding question for Hamilton cycles
has no such easy answer. (Indeed for those of you who know any computational complexity theory the problem of
deciding whether a given graph contains a Hamilton cycle isNP-complete. Roughly speaking this means that it is very
unlikely that there is any efficient method for deciding if an arbitrary large graph contains a Hamilton cycle.) We will
instead consider some sufficient conditions for the existence of Hamilton cycles.

Remark 4.2. A Hamilton cycle is generally not an Euler circuit since it does not necessarily contain all edges. An
Euler circuit is generally not a Hamilton cycle since it is not necessarily even a cycle.

Definition 4.3 (Minimum degree). The minimum degree of a graph 𝐺 is the number

𝛿 (𝐺) = min{𝑑 (𝑣) | 𝑣 ∈ 𝑉 (𝐺)}.

Definition 4.4 (Adjacent). Two vertices 𝑢, 𝑣 ∈ 𝑉 (𝐺) are adjacent if 𝑢𝑣 ∈ 𝐸 (𝐺) otherwise they are non-adjacent.

Theorem 4.5 (Dirac 1952). If 𝐺 is a graph of order 𝑛 ≥ 3 and 𝛿 (𝐺) ≥ 𝑛/2, then 𝐺 contains a Hamilton cycle.

Proof. Omitted. □

Note that Dirac’s theorem follows immediately from the following result.

Theorem 4.6 (Ore 1960). If 𝐺 is a graph of order 𝑛 ≥ 3 and 𝑑 (𝑢) + 𝑑 (𝑣) ≥ 𝑛 for every pair of non-adjacent vertices
𝑢, 𝑣 ∈ 𝑉 (𝐺), then 𝐺 is Hamiltonian.

Proof. Omitted. □

4.2 Forbidden subgraphs: Mantel’s theorem

Definition 4.7 (𝐻 -free). Let 𝐺 and 𝐻 be graphs. 𝐺 is 𝐻 -free if 𝐺 does not contain a copy of 𝐻 .

Definition 4.8 (Extremal number, Turán number). The extremal number (or Turán number) of 𝐻 is the
number

ex(𝑛, 𝐻 ) = max{|𝐸 (𝐺) | : 𝐺 = (𝑉 , 𝐸), |𝑉 | = 𝑛 and 𝐺 is 𝐻 -free}.

The question of determining the value of ex(𝑛, 𝐻 ) for a fixed graph 𝐻 is called the Turán problem for 𝐻 .
Solving the Turán problem for 𝐻 really requires us to achieve two objectives. Suppose we want to show ex(𝑛, 𝐻 ) = 𝑘 :

(i) ex(𝑛, 𝐻 ) ≥ 𝑘 : Find a graph 𝐺 of order 𝑛 and size 𝑘 such that it is 𝐻 -free;

(ii) ex(𝑛, 𝐻 ) ≤ 𝑘 : If 𝐺 is of order 𝑛 and 𝐻 -free, then |𝐸 (𝐺) | ≤ 𝑘 .
The following result will help us to achieve ≥ in many cases.

Lemma 4.9. If 𝐺 and 𝐻 are graphs with 𝜒 (𝐻 ) > 𝜒 (𝐺), then 𝐺 is 𝐻 -free.
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Proof. Omitted. □

Theorem 4.10 (Mantel 1903). If 𝑛 ≥ 1, then ex(𝑛, 𝐾3) =
⌊
𝑛2/4

⌋
.

Proof. Omitted. □

4.3 Forbidden subgraphs: Turán’s theorem

Given (Mantel 1903) and (4.9), an obvious candidate for a 𝐾𝑟+1-free graph that has the most edges (i.e. that has size ex
(𝑛, 𝐾𝑟+1)) is a graph with chromatic number 𝑟 and as many edges as possible subject to this constraint.

Definition 4.11 (Complete r-partite graph). A graph 𝐺 = (𝑉 , 𝐸) is a complete r-partite graph if there is a
partition 𝑉 = 𝑉1 ∪𝑉2 ∪ · · · ∪𝑉𝑟 , each 𝑉𝑖 is an independent set and

𝐸 (𝐺) =
{
𝑣𝑤 | 𝑣 ∈ 𝑉𝑖 ,𝑤 ∈ 𝑉𝑗 , for some 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑟

}
.

(i.e. all edges between distinct vertex classes are present.)

Clearly, among all 𝑟 -partite graphs of order 𝑛 the number of edges will be maximised by a complete 𝑟 -partite graph
(since if an 𝑟 -partite graph is not complete then we can add an edge while still maintaining its chromatic number as
𝑟 ). But how should the 𝑛 vertices be shared among the 𝑟 vertex classes? For 𝑟 = 2 we can easily check that if the two
vertex classes have 𝑎 and 𝑛 − 𝑎 vertices then the number of edges is 𝑎(𝑛 − 𝑎) and the is easily seen to be maximised
when 𝑎 = ⌊𝑛/2⌋. But for 𝑟 > 2 this problem is a little less straightforward.
In fact, it turns out that taking the 𝑟 classes to be as equal as possible in size will achieve the desired result.
Fact: Turán graphs have maximal number of edges among 𝑟 -partite graphs with vertex set [𝑛].

Definition 4.12 (Turán graph). Let 𝑛 ≥ 𝑟 ≥ 2 be integers. The Turán graph𝑇𝑟 (𝑛) is the complete 𝑟 -partite graph
with the vertex set [𝑛] and vertex classes as equal as possible in size.

Remark 4.13. Note that this defines a unique (upto isomorphism) 𝑟 -partite graph of order 𝑛, with 𝑏 vertex classes
each containing ⌊𝑛/𝑟⌋ vertices and 𝑟 −𝑏 vertex classes each containing ⌈𝑛/𝑟⌉ vertices, where 𝑏 satisfies 𝑛 = 𝑏 ⌊𝑛/𝑟⌋ +
(𝑟 − 𝑏) ⌈𝑛/𝑟⌉. Denote the number of edges in 𝑇𝑟 (𝑛) by 𝑡𝑟 (𝑛).

Note that if we really wished to we could give an explicit formula for 𝑡𝑟 (𝑛) but it would not in general be very useful
so we do not bother!
The next result tells us that𝑇𝑟 (𝑛) is a very plausible candidate for solving the Turán problem for 𝐾𝑟+1 in the sense that
the converse of the above fact also holds.

Lemma 4.14. Let𝐺 be an r-partite graphs with 𝑛 vertices and maximal edges. Then𝐺 is isomorphic to𝑇𝑟 (𝑛). Moreover

𝑡𝑟 (𝑛) = 𝑡𝑟 (𝑛 − 𝑟 ) + (𝑟 − 1) (𝑛 − 𝑟 ) +
(
𝑟

2

)
.

Proof. Omitted. □

Theorem 4.15 (Turán 1, 1941). If 2 ≤ 𝑟 ≤ 𝑛 are integers and𝐺 is a 𝐾𝑟+1-free graph of order 𝑛, then |𝐸 (𝐺) | ≤ 𝑡𝑟 (𝑛).

Proof. Omitted. □

Theorem 4.16 (Turán 2, 1941). If 2 ≤ 𝑟 ≤ 𝑛 are integers and𝐺 is a 𝐾𝑟+1-free graph of order 𝑛 with ex(𝑛, 𝐾𝑟+1) edges,
then 𝐺 is isomorphic to 𝑇𝑟 (𝑛).

Proof. Omitted. □
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4.4 Digression: double counting

Theorem 4.17 (Double counting principle). If 𝐺 = (𝐴, 𝐵;𝐸) is a bipartite graph, then∑︁
𝑎∈𝐴

𝑑 (𝑎) =
∑︁
𝑏∈𝐵

𝑑 (𝑏).

Proof. Omitted. □

We have already seen examples of such arguments but we have not explicitly used this bipartite graph formulation
(mainly because it would have made our arguments more complicated).
For example, the Handshake Lemma says: if𝐺 = (𝑉 , 𝐸) is a graph then

∑
𝑣∈𝑉 𝑑 (𝑣) = 2|𝐸 |. This can be proved using an

explicit double counting argument as follows. Let 𝐺 = (𝑉 , 𝐸) be a graph. Now define a bipartite graph 𝐻 = (𝐴, 𝐵; 𝐹 )
where 𝐴 = 𝑉 , 𝐵 = 𝐸 and the edges in 𝐻 are

𝐹 = {𝑣𝑒 | 𝑣 ∈ 𝑉 , 𝑒 ∈ 𝐸 and 𝑣 ∈ 𝑒}.

So 𝐻 is a bipartite graph with edge set 𝐹 . Moreover, using subscripts to denote degrees in the two different graphs, we
have ∑︁

𝑎∈𝐴
𝑑𝐻 (𝑎) =

∑︁
𝑣∈𝑉

𝑑𝐺 (𝑣)

while ∑︁
𝑏∈𝐵

𝑑𝐻 (𝑏) =
∑︁
𝑒∈𝐸

#{𝑣 | 𝑣 ∈ 𝑒} =
∑︁
𝑒∈𝐸

2 = 2|𝐸 |.

The double counting principle then tells us that these two expressions are equal.

4.5 Asymptotics: Turán density

Definition 4.18 (Turán density). The Turán density of a graph 𝐹 is the number

𝜋 (𝐹 ) = lim
𝑛→∞

ex(𝑛, 𝐹 )(
𝑛
2
) .

Lemma 4.19. For a graph 𝐹, 𝜋 (𝐹 ) is well defined. If 𝑟 ≥ 2, then 𝜋 (𝐾𝑟+1) = 1 − 1/𝑟 .

Proof. Omitted. □

4.6 Bipartite forbidden subgraphs

Turán’s theorem gives us a full answer to the Turán problem for complete graphs, but what can we say for bipartite
graphs? It is easy to compute ex(𝑛, 𝐾1,𝑡 ) directly for any 𝑡 ≥ 1, but in general the problem is hard and we settle for
upper bounds.

Remark 4.20. Let 𝐺 be a 𝐾1,𝑡 -free graph of order 𝑛. For each 𝑣 ∈ 𝐺 , 𝑣 can be adjacent to at most 𝑡 − 1 vertices:

ex
(
𝑛, 𝐾1,𝑡

)
=

(𝑡 − 1)𝑛
2 .

The result is divided by 2 since each edge contains 2 vertices.

Theorem 4.21 (Kővári-Sós-Turán 1954). If 𝑛 ≥ 𝑟 ≥ 𝑠 ≥ 2, then

ex(𝑛, 𝐾𝑟,𝑠) ≤
1
2 (𝑟 − 1)1/𝑠𝑛2−1/𝑠 + 1

2 (𝑠 − 1)𝑛.

In particular, ex(𝑛, 𝐾𝑟,𝑠) = 𝒪
(
𝑛2−1/𝑠

)
and 𝜋

(
𝐾𝑟,𝑠

)
= 0.
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Proof. Omitted. □

Corollary 4.22 (Erdős 1946). If 𝑋 ⊂ R2 and |𝑋 | = 𝑛, then at most 𝑛3/2
√
2 + 𝑛

2 pairs of points in 𝑋 are at unit distance.

Proof. Omitted. □

4.7 Erdös-Stone: the fundamental theorem of extremal graph theory

Turán’s theorem implies that for 𝑟 ≥ 3

𝜋 (𝐾𝑟 ) = 1 − 1
𝑟 − 1 = 1 − 1

𝜒 (𝐾𝑟 ) − 1 .

So in these cases the Turán density is determined by the chromatic number. Moreover, this also holds for complete
bipartite graphs by the Kövári-SósTurán theorem (4.21) since

𝜋
(
𝐾𝑟,𝑠

)
= 0 = 1 − 1

𝜒
(
𝐾𝑟,𝑠

)
− 1

.

In fact, this holds in general and so allows us determine the Turán density of any graph in terms of its chromatic
number.

Theorem 4.23 (Erdős-Stone 1946). If 𝐻 is a graph with chromatic number 𝜒 (𝐻 ) = 𝑟 , then

𝜋 (𝐻 ) = 1 − 1
𝑟 − 1 .

Proof of (4.23) =⇒ . Omitted. □

Proof of (4.23)⇐= . Omitted. □

Lemma 4.24. Let 0 < 𝑐, 𝜖 < 1 and 𝑛 > 2(1 + 1/𝑐)/𝜖 . If 𝐺 is a graph of order 𝑛 with at least (𝑐 + 𝜖)
(
𝑛
2
)
edges, then 𝐺

contains a subgraph 𝐺 ′ of order 𝑛′ ≥ 𝜖1/2𝑛 with minimum degree 𝛿 (𝐺 ′) ≥ 𝑐𝑛′.

Proof. Omitted. □

Theorem 4.25. Let 𝑟 ≥ 2, 𝑡 ≥ 1 and 0 < 𝜖 < 1/𝑟 . There exists 𝑛0(𝑟, 𝑡, 𝜖) such that if 𝐺 has 𝑛 ≥ 𝑛0 vertices and
minimum degree

𝛿 (𝐺) ≥
(
1 − 1

𝑟 − 1 + 𝜖
)
𝑛,

then 𝐺 contains a copy of 𝐾𝑟 (𝑡).

Proof. Omitted. □

4.8 Stability

If a 𝐾3-free graph of order 𝑛 has "almost" ex (𝑛, 𝐾3) =
⌊
𝑛2/4

⌋
edges must it look like the Turán graph 𝑇2(𝑛)?

Theorem 4.26 (Füredi 2010). If𝐺 is a 𝐾𝑟+1-free graph of order 𝑛 with at least ex (𝑛, 𝐾𝑟+1) − 𝑡 edges, for some 𝑡 ≥ 0,
then there exists 𝐻 ⊆ 𝐺 such that |𝐸 (𝐻 ) | ≥ |𝐸 (𝐺) | − 𝑡 and 𝜒 (𝐻 ) ≤ 𝑟 .

Proof. Omitted. □

16



Notes on Graph Theory Zhiyu Wang

5 Families of sets: chains, antichains, and intersection problems

5.1 Chains and antichains

Let 0 ≤ 𝑘 ≤ 𝑛 be integers and recall that𝒫( [𝑛]) denotes the power set of [𝑛] :

𝒫( [𝑛]) = {𝐴 | 𝐴 ⊆ [𝑛]}

while the family of 𝑘-subsets of [𝑛] is (
[𝑛]
𝑘

)
= {𝐴 ⊆ [𝑛] | |𝐴| = 𝑘}.

Definition 5.1 (Chain). A family of sets 𝒞 is a chain if ∀𝐴, 𝐵 ∈ 𝒞𝐴 ⊆ 𝐵 or 𝐵 ⊆ 𝐴.

Remark 5.2. A chain is a family of sets 𝒞 that can be linearly ordered under inclusion i.e. 𝒞 = {𝐶1,𝐶2, . . . ,𝐶𝑡 }
with 𝐶1 ⊆ 𝐶2 ⊆ · · · ⊆ 𝐶𝑡 .

Definition 5.3 (Antichain). A family of sets𝒜 is an antichain if ∀𝐴, 𝐵 ∈ 𝒜, 𝐴 ⊆ 𝐵 =⇒ 𝐴 = 𝐵.

Remark 5.4. An antichain is a family of sets 𝒜 that are incomparable under inclusion i.e. if 𝐴, 𝐵 ∈ 𝒜 and 𝐴 ≠ 𝐵

then 𝐴 ⊈ 𝐵 and 𝐵 ⊈ 𝐴.

The first question we will explore in this section is: if𝒜 ⊆ 𝒫( [𝑛]) is a chain or antichain how large can𝒜 be?
For chains this question is trivial (stop and figure out the answer for yourself if it isn’t immedidately obvious). For
antichains the answer requires some work.
Both versions of this question require the following simple fact.

Lemma 5.5. If 𝒜 is an antichain and 𝒞 is a chain, then

|𝒜 ∩𝒞 | ≤ 1.

Proof. Omitted. □

How large can a chain 𝒞 ⊆ 𝒫( [𝑛]) be?

Proposition 5.6. If 𝒞 ⊆ 𝒫( [𝑛]) is a chain, then |𝒞 | ≤ 𝑛 + 1.

Proof. Omitted. □

A little thought tells us that an obvious candidate for the largest antichain in𝒫( [𝑛]) is the "middle layer":
( [𝑛]
⌊𝑛/2⌋

)
. This

guess turns out to be correct, and we can prove it using the same basic idea as Proposition (5.6) by finding a suitable
partition of𝒫( [𝑛]) into chains.

Theorem 5.7 (Sperner 1928). If 𝒜 ⊆ 𝒫( [𝑛]) is an antichain, then

|𝒜 | ≤
(
𝑛

⌊𝑛/2⌋

)
.

By Lemma (5.5), this result will follow if we can show that 𝒫( [𝑛]) can be partitioned into
(

𝑛
⌊𝑛/2⌋

)
chains. In fact, we

will prove a slightly stronger result.

Definition 5.8 (Symmetric). A chain 𝒞 ⊆ 𝒫( [𝑛]) is symmetric if 𝒞 = {𝐶1, . . . ,𝐶𝑘 } with |𝐶𝑖+1 | = |𝐶𝑖 | + 1 for all
1 ≤ 𝑖 ≤ 𝑘 − 1 and |𝐶1 | + |𝐶𝑘 | = 𝑛.

Lemma 5.9.𝒫( [𝑛]) can be partitioned into symmetric chains.

Proof. Omitted. □
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Proof of (5.7). Omitted. □

5.2 LYM-inequality

Theorem 5.10. (Lubell, Yamamoto, Meshalkin 1954). If𝒜 ⊆ 𝒫( [𝑛]) is an antichain, then∑︁
𝐴∈𝒜

1(
𝑛
|𝐴 |

) ≤ 1.

Remark 5.11. Note that 2 terms
(
𝑛
|𝐴1 |

)
,
(
𝑛
|𝐴2 |

)
in this summation is the same if |𝐴1 | = |𝐴2 |. For 0 ≤ 𝑘 ≤ 𝑛, let

𝑎𝑘 = |𝒜 ∩
([𝑛]
𝑘

)
| denote the number of size 𝑘 sets in𝒜, then equivalenly,(∑︁

𝐴∈𝒜

1(
𝑛
|𝐴 |

) =

)
𝑛∑︁

𝑘=0

𝑎𝑘(
𝑛
𝑘

) ≤ 1.

We are simply gathering same terms.

Remark 5.12. If one sums the proportion of each layer contained in 𝒜 over all of the layers, the sum of that
proportion ≤ 1.

Proof by counting. Omitted. □

Proof by the probabilistic method. Omitted. □

5.3 Intersecting families

Definition 5.13 (Intersecting family). A family of sets𝒜 is intersecting if ∀𝐴, 𝐵 ∈ 𝒜, 𝐴 ∩ 𝐵 ≠ ∅.

How large can an intersecting family𝒜 ⊆ 𝒫( [𝑛]) be?

Proposition 5.14. If 𝒜 ⊆ 𝒫( [𝑛]) is intersecting, then |𝒜 | ≤ 2𝑛−1.

Remark 5.15. Note that 2𝑛−1 is tight since the family 𝒜 = {𝐴 ∈ 𝒫( [𝑛]) | 1 ∈ 𝐴} has size 2𝑛−1.

Proof. Omitted. □

If𝒜 ⊆
([𝑛]
𝑘

)
is intersecting, how large can it be?

• If 𝑛 < 2𝑘 , then
([𝑛]
𝑘

)
is intersecting. This is because that we need at least 2𝑘 elements to have 2 disjoint sets of

size 𝑘 . Hence,
|𝒜 | ≤

(
𝑛

𝑘

)
.

• If 𝑛 = 2𝑘 , for𝒜 to be intersecting, one needs 𝐴 ∈ 𝒜 =⇒ [𝑛] \𝐴 ∉ 𝒜. In this case,

|𝒜 | ≤ 1
2

(
2𝑘
𝑘

)
=
𝑘

𝑛

(
𝑛

𝑘

)
.

• If 𝑛 > 2𝑘 , which is the really interesting case, one large intersecting family is

𝒜
∗ = {𝐴 ∈

(
[𝑛]
𝑘

)
| 1 ∈ 𝐴} and |𝒜∗ | =

(
𝑛 − 1
𝑘 − 1

)
.

Thus, the next theorem tells us that one cannot do any better than this (i.e. there is no larger upper bounds).

18



Notes on Graph Theory Zhiyu Wang

Theorem 5.16 (Erdős-Ko-Rado 1961). If𝒜 ⊆
([𝑛]
𝑘

)
is intersecting and 𝑛 ≥ 2𝑘 , then

|𝒜 | ≤
(
𝑛 − 1
𝑘 − 1

)
.

Remark 5.17. Note that
(
𝑛−1
𝑘−1

)
= 𝑘

𝑛

(
𝑛
𝑘

)
, which is the bound we find for 𝑛 = 2𝑘 case.

Proof by using cyclic permutations due to G.O.H. Katona 1972. Omitted. □

5.4 Compressions (not lectured 2023 and non-examinable)

5.5 The linear algebra method

Definition 5.18 (Linearly independent). A set of vectors {𝑣1, . . . , 𝑣𝑡 } in a vector space𝑉 over a field F is linearly
independent if

𝑡∑︁
𝑖=1

𝜆𝑖𝑣𝑖 = 0 with 𝜆1, . . . , 𝜆𝑡 ∈ F =⇒ 𝜆1 = 𝜆2 = · · · = 𝜆𝑡 = 0.

Lemma 5.19 (The linear algebra bound). If 𝑣1, . . . , 𝑣𝑡 are linearly independent vectors in a vector space of dimension
𝑑 , then 𝑡 ≤ 𝑑 .

Proof. This is part of the Steinitz Exchange Lemma (see 1st Year Algebra 1). □

Definition 5.20 (Inner product space, pre-Hilbert space). Let𝑋 be any vector space over F. An inner product
on 𝑋 is a function (·, ·) : 𝑋 × 𝑋 → F (often called Hermitian if F = C) satisfying ∀𝑥,𝑦 ∈ 𝑋 ∀𝛼 ∈ F

• Linearity:
(𝑥 + 𝑦, 𝑧) = (𝑥, 𝑧) + (𝑦, 𝑧);

• Homogeneity:
(𝛼𝑥,𝑦) = 𝛼 (𝑥,𝑦);

• Conjugate symmetry:
(𝑥,𝑦) = (𝑦, 𝑥);

• Non-degeneracy (positive definite): {
(𝑥, 𝑥) ≥ 0,
(𝑥, 𝑥) = 0 ⇔ 𝑥 = 0.

The pair (𝑋, (·, ·)) is an inner product space (or a pre-Hilbert space).

Remark 5.21. Note that (0, 𝑥) = (0, 𝑥) + (0, 𝑥) = 0.

Definition 5.22 (Orthogonal). A set of vectors {𝑣1, . . . , 𝑣𝑡 } in an inner product space is orthogonal if ∀𝑖 ≠

𝑗,
〈
𝑣𝑖 , 𝑣 𝑗

〉
= 0.

Remark 5.23. It is easy to check that any orthogonal set of vectors is linearly independent hence the bound in
Lemma (5.19) applies to any orthogonal set of vectors. Let {𝑣1, 𝑣2, . . . , 𝑣𝑛} be a set of non-zero orthogonal vectors.
Let 𝜆1, 𝜆2, . . . , 𝜆𝑛 ∈ F such that

𝑛∑︁
𝑘=1

𝜆𝑘𝑣𝑘 = 0,
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then

𝜆 𝑗����*≠ 0
| |𝑣 𝑗 | |2 =

〈 𝑛∑︁
𝑘=1

𝜆𝑘𝑣𝑘 , 𝑣 𝑗

〉
= 0, ∀𝑗 = 1, 2, . . . , 𝑛

by linearity of the first argument of the inner product.

We start with a simple example to illustrate the method. The basic idea is to associate vectors with sets from a given
family and then show that the vectors we obtain are linearly independent and hence prove an upper bound on the size
of the family.

Theorem 5.24. If 𝒜 = {𝐴1, . . . , 𝐴𝑚} ⊆ 𝒫( [𝑛]) is a family of sets satisfying:

(i) |𝐴𝑖 | is odd for all 1 ≤ 𝑖 ≤ 𝑚;

(ii)
��𝐴𝑖 ∩𝐴 𝑗

�� is even for all 𝑖 ≠ 𝑗 ,

then𝑚 ≤ 𝑛.

Proof. Omitted. □

A more interesting application is the following result known as Fisher’s Inequality.

Theorem 5.25 (Fisher 1940). Let 𝑘 ≥ 1. If 𝒜 ⊆ 𝒫( [𝑛]) satisfies |𝐴 ∩ 𝐵 | = 𝑘 for every pair of sets 𝐴, 𝐵 ∈ 𝒜 with
𝐴 ≠ 𝐵, then |𝒜 | ≤ 𝑛.

Proof. Omitted. □

5.6 𝐿-intersecting families

Our final application of the linear algebra method is to a more sophisticated intersection problem. This will require us
to work over a vector space of polynomials in several variables.
Recall that R[𝑥] denotes the ring of polynomials with real coefficients. This is

R[𝑥] =
{
𝑝 (𝑥) = 𝑐0 + 𝑐1𝑥 + · · · + 𝑐𝑑𝑥𝑑 | 𝑑 ∈ Z+, 𝑐0, . . . , 𝑐𝑑 ∈ R

}
.

It is easy to check that this forms a vector space over R under the obvious operations of addition and scalar multipli-
cation. The zero vector is the zero polynomial.
If 𝑥1, . . . , 𝑥𝑛 are variables, then we can form the obvious generalisation of R[𝑥], that is, the ring of multivariate
polynomials with real coefficients R [𝑥1, . . . , 𝑥𝑛]. Formally, we define a monomial in 𝑥1, . . . , 𝑥𝑛 to be any product
of the form 𝑥

𝛼1
𝑎1 · · · 𝑥

𝛼𝑟
𝑎𝑟 where 𝑟 ∈ Z+, 1 ≤ 𝑎1 < 𝑎2 < · · · < 𝑎𝑟 ≤ 𝑛 and 𝛼1, . . . , 𝛼𝑟 ∈ N. Note that the empty product is

allowed (𝑟 = 0), and this is defined to be 1. A multivariate polynomial is then any finite real linear combination of
monomials. The set of all such polynomials is R [𝑥1, . . . , 𝑥𝑛]. The degree of a monomial 𝑥𝛼1

𝑎1 · · · 𝑥
𝛼𝑟
𝑎𝑟 is

∑𝑟
𝑖=1 𝛼𝑖 and the

degree of a non-zero polynomial 𝑝 (𝑥1, . . . , 𝑥𝑛) is the maximum of the degrees of the monomials it contains.
For example, in R [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5] the polynomial

𝑝 (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = −3 + 2𝑥1𝑥3𝑥25 + 3𝑥31𝑥22,

has degree: deg(𝑝) = max{0, 4, 5} = 5.
Again, it is easy to check that R [𝑥1, . . . , 𝑥𝑛] is a vector space over R.
We will be interested in a special subspace of this space. Let 𝑠 ∈ N and define

𝑈 (𝑠) = Span
{
𝑥𝑎1𝑥𝑎2 · · · 𝑥𝑎𝑟 | 0 ≤ 𝑟 ≤ 𝑠 and 1 ≤ 𝑎1 < 𝑎2 · · · < 𝑎𝑟 ≤ 𝑛

}
.

Thus,𝑈 (𝑠) is the subspace ofR [𝑥1, . . . , 𝑥𝑛] spanned by all monomials of degree at most 𝑠 with no powers of any variable
greater than one. Since any spanning set of vectors contains a linearly independent spanning set (i.e. the basis), we
have dim(𝑈 (𝑠)) ≤ |𝑈 (𝑠) | = ∑𝑠

𝑟=0
(
𝑛
𝑠

)
. This fact is useful when we prove theorem (5.28).

The following lemma is useful for the next theorem.
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Lemma 5.26. If 𝑞1, . . . , 𝑞𝑚 ∈ R [𝑥1, . . . , 𝑥𝑛] and 𝑣1, . . . , 𝑣𝑚 ∈ R𝑛 satisfy

(i) for 1 ≤ 𝑖 ≤ 𝑚 we have 𝑞𝑖 (𝑣𝑖) ≠ 0;

(ii) for 1 ≤ 𝑗 < 𝑖 ≤ 𝑚 we have 𝑞𝑖
(
𝑣 𝑗

)
= 0,

then {𝑞1, . . . , 𝑞𝑚} are linearly independent.

Proof. Omitted. □

Having introduced all of the necessary algebra, we now introduce one more definitino and the combinatorial problem
that we wish to consider.

Definition 5.27 (𝐿-intersecting). 𝐿𝑒𝑡𝐿 ⊆ {0, 1, 2, . . . , 𝑛}. A family 𝒜 ⊆ 𝒫( [𝑛]) is 𝐿-intersecting if for each pair
of sets ∀𝐴, 𝐵 ∈ 𝒜 with 𝐴 ≠ 𝐵, we have |𝐴 ∩ 𝐵 | ∈ 𝐿.

Theorem 5.28 (Ray-Chaudhuri and Wilson 1975). If𝒜 ⊆ 𝒫( [𝑛]) is 𝐿 intersecting and |𝐿 | = 𝑠 , then

|𝒜 | ≤
𝑠∑︁

𝑟=0

(
𝑛

𝑟

)
.

Proof. Omitted. □
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6 Ramsey theory

Ramsey theory is another branch of extremal combinatorics, it has been summarised as saying that "total disorder is
impossible."
In Turán-type problems, we consider how dense an object (in our examples this was typically a graph) needs to be to
guarantee that it contains a copy of a given sub-object. Ramsey theory instead considers questions of the form "given
an object that is partitioned into two (or more) parts, how large must the object be to guarantee that one of the parts
contains a particular sub-object".
For example, if we take the set of integers [𝑁 ] = {1, . . . , 𝑁 } and partition it into two parts: [𝑁 ] = 𝐴 ¤∪𝐵, how large
must 𝑁 be to guarantee that one of the parts contains a three term arithmetic progression?
Wewill consider such questions of Ramsey theory in the integers later, but we start with the Ramsey theory of complete
graphs.
We will describe partitions in terms of colourings. So, for example, a partition of the edges of 𝐾𝑛 into two parts is
described by a red-blue edge-colouring of 𝐾𝑛 . Note that such edge-colourings are not graph colourings as considered
earlier in this course, there are no constraints on how the edges of 𝐾𝑛 are coloured, it is simply a convenient way of
describing a partition of the edges of 𝐾𝑛 .

Definition 6.1 (Edge-colouring of complete graph). An edge-colouring of 𝐾𝑛 with 𝑘 colours 𝑐1, . . . , 𝑐𝑘 is a
function 𝑐 : 𝐸 (𝐾𝑛) → {𝑐1, 𝑐2, . . . , 𝑐𝑘 }.

Thus, an edge-colouring of 𝐾𝑛 is simply an assignment of colours to the edges of 𝐾𝑛 . Given a copy of 𝐾𝑛 together with
an edge-colouring, we say that 𝐾𝑛 is edge-coloured. For most of this section we will only consider edge-colourings
with two colours which we will take to be red and blue.
Given a red-blue edge-coloured 𝐾𝑛 , we say that it contains a red (blue) 𝐻 if there is a subgraph isomorphic to 𝐻 with
all edges coloured red (blue). A subgraph of an edge-coloured 𝐾𝑛 is said to bemonochromatic if all of its edges have
the same colour.
Given an edge coloured 𝐾𝑛 and a colour 𝑐𝑖 , we define for each 𝑣 ∈ 𝑉 (𝐾𝑛)

Γ𝑐𝑖 (𝑣) = {𝑤 ∈ 𝑉 (𝐾𝑛) | 𝑐 (𝑣𝑤) = 𝑐𝑖} and 𝑑𝑐𝑖 (𝑣) =
��Γ𝑐𝑖 (𝑣)�� .

6.1 Ramsey’s theorem

Any gathering of six people must contain either three mutual friends or three mutual strangers. This is the first not
entirely trivial example of a Ramsey number.

Definition 6.2 (Ramsey number). Let 𝑠, 𝑡 ≥ 2 be integers. The Ramsey number 𝑅(𝑠, 𝑡) is the smallest integer 𝑛
such that any red-blue edge-coloured 𝐾𝑛 always contains a red 𝐾𝑠 or a blue 𝐾𝑡 i.e.

𝑅(𝑠, 𝑡) = min{𝑛 ∈ N | any red-blue edge-coloured 𝐾𝑛 contains a red 𝐾𝑠 or a blue 𝐾𝑡 }.

Remark 6.3. Let 𝑅𝑠,𝑡 = {𝑛 ∈ N | any red-blue edge-coloured 𝐾𝑛 contains a red 𝐾𝑠 or a blue 𝐾𝑡 }. Note that it is not
obvious that 𝑅(𝑠, 𝑡) is well-defined since it is possible that 𝑅𝑠,𝑡 = ∅. However, it turns out that 𝑅(𝑠, 𝑡) is well-defined
and this fact is known as Ramsey’s theorem (6.6). Before stating and proving Ramsey’s theorem, we start with some
small exact examples.

Proposition 6.4. 𝑅(3, 3) = 6.

Proof. Omitted. □

Proposition 6.5. 𝑅(3, 4) = 9.

Proof. Omitted. □

Theorem 6.6 (Ramsey 1930). For 𝑠, 𝑡 ≥ 2, there exists 𝑛 ∈ N such that any red-blue edge-coloured 𝐾𝑛 contains either
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a red 𝐾𝑠 or a blue 𝐾𝑡 . Moreover if 𝑅(𝑠, 𝑡) denotes the smallest such 𝑛, then

𝑅(𝑠, 𝑡) ≤
(
𝑠 + 𝑡 − 2
𝑠 − 1

)
.

Proof. Omitted.
□

Proposition 6.7. 𝑅(4, 4) = 18.

Proof. Omitted. □

Theorem 6.8 (Campos, Griffiths, Morris, Sahasrabudhe 2023+). There exists a real number 𝜖 > 0 such that

𝑅(𝑠, 𝑠) ≤ (4 − 𝜖)𝑠 .

See this for details.

6.2 Ramsey numbers: lower bounds and more colours

What about a lower bound for 𝑅(𝑠, 𝑠)? To show that a given integer 𝑛 is a lower bound for 𝑅(𝑠, 𝑠), we need to show
that there exists a red-blue edge-colouring of 𝐾𝑛 with no monochromatic 𝐾𝑠 .

Theorem 6.9 (Erdős 1947). Let 3 ≤ 𝑠 ≤ 𝑛. If
(
𝑛
2
)
21−(𝑠2) < 1, then 𝑅(𝑠, 𝑠) > 𝑛. In particular, 𝑅(𝑠, 𝑠) > 2𝑠/2.

Proof. Omitted. □

Definition 6.10 (Multicolour Ramsey number). For 𝑘 ≥ 1 and 𝑠1, . . . , 𝑠𝑘 ≥ 2, define 𝑅𝑘 (𝑠1, 𝑠2, . . . , 𝑠𝑘 ) to be the
smallest integer 𝑛 such that for any edge-colouring of 𝐾𝑛 with 𝑘 colours 𝑐1, . . . , 𝑐𝑘 , there exists a 𝑐𝑖-coloured copy
of 𝐾𝑠𝑖 for some 1 ≤ 𝑖 ≤ 𝑘 i.e.

𝑅𝑘 (𝑠1, 𝑠2, . . . , 𝑠𝑘 ) = min{𝑛 ∈ N | for any edge-colouring of 𝐾𝑛 with 𝑘 colours 𝑐1, . . . , 𝑐𝑘 ,
there exists a 𝑐𝑖-coloured copy of 𝐾𝑠𝑖 for some 1 ≤ 𝑖 ≤ 𝑘}.

If 𝑠1 = 𝑠2 · · · = 𝑠𝑘 = 𝑠 , then we denote this by 𝑅𝑘 (𝑠).

Remark 6.11. For example, 𝑅𝑘 (3) is the smallest integer 𝑛 such that whenever the edges of 𝐾𝑛 are coloured with 𝑘-
colours, there exists a monochromatic triangle. As in the case of two colours, we need to check that 𝑅𝑘 (𝑠1, 𝑠2, . . . , 𝑠𝑘 )
is in fact well defined.

Theorem 6.12. For all 𝑘 ≥ 1 and 𝑠1, . . . , 𝑠𝑘 ≥ 2, 𝑅𝑘 (𝑠1, . . . , 𝑠𝑘 ) is well defined.

Proof. Omitted. □

6.3 Ramsey theory in the integers

Theorem 6.13 (Fermat’s Last Theorem). There are no non-trivial integer solutions to 𝑥𝑛 + 𝑦𝑛 = 𝑧𝑛 for any integer
𝑛 ≥ 3.

Proof. The proof of Fermat’s Last Theorem is unfortunately slightly too long to fit in these notes. □

Instead we will consider the question of solutions to the Fermat equation modulo a prime 𝑝 . For example 111333 +
222333 = 515333 mod 1051. Our next result tells us that for any fixed 𝑛 there are always non-trivial solutions modulo
any sufficiently large prime.
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Theorem 6.14. For every integer 𝑛 ≥ 1 there exists 𝑝𝑛 such that for any prime 𝑝 ≥ 𝑝𝑛 the congruence

𝑥𝑛 + 𝑦𝑛 = 𝑧𝑛 mod 𝑝

has a non-trivial solution (i.e. a solution with 𝑥,𝑦, 𝑧 ≠ 0 mod 𝑝).

The key to proving Theorem (6.14) is the following Ramsey type result in the integers known as Schur’s theorem,
which is itself proved using the Ramsey theory of graphs.

Definition 6.15 (Colouring of integer). An integer-colouring of 𝐴 ⊆ N with 𝑘 colours 𝑐1, . . . , 𝑐𝑘 is a function
𝑐 : 𝐴 → {𝑐1, 𝑐2, . . . , 𝑐𝑘 }.

As with the edge-colourings of𝐾𝑛 in the previous section, there are no restrictions on these𝑘-colourings. A 𝑘-colouring
simply describes a partition of the set 𝐴 into 𝑘 parts.

Theorem 6.16 (Schur 1916). For any 𝑘 ≥ 1, there exists an integer 𝑆 (𝑘) such that for any 𝑘-colouring of the integers
{1, 2, . . . , 𝑆 (𝑘)}, there exist 𝑢, 𝑣,𝑤 of the same colour such that 𝑢 + 𝑣 = 𝑤 .

Proof. Omitted. □

Lemma 6.17. If 𝑝 is a prime, then Z∗𝑝 , the multiplicative group of units mod 𝑝 , is a cyclic group.

Proof. See 2nd year Algebra 4 notes or Number theory notes. □

Proof of (6.14). Omitted. □

Theorem 6.18. In any red-blue edge-colouring of 𝐾N, there is an infinite set 𝐴 ⊆ N such that 𝐾𝐴 is monochromatic.

Proof. Omitted. □

6.4 Van der Waerden’s theorem

The last result of our course is the starting point for many more recent deep results in combinatorics and additive
number theory, such as the HalesJewett theorem and the Green-Tao theorem on arithmetic progressions in the primes.

Theorem 6.19 (Van der Waerden 1927). If 𝑘, 𝑡 ≥ 1, there exists an integer𝑊 (𝑘, 𝑡) such that whenever [𝑊 (𝑘, 𝑡)] is
𝑘-coloured there is a monochromatic arithmetic progression of length 𝑡 .

Proof. Omitted. □
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7 Inequalities

Lemma 7.1. If 𝑛 ≥ 𝑘 ≥ 1, then
(𝑛 − 𝑘 + 1)𝑘

𝑘! ≤
(
𝑛

𝑘

)
≤ 𝑛𝑘

𝑘! .

Proof. Omitted. □

Definition 7.2 (Convex function). A function 𝑓 : (𝑎, 𝑏) → R is convex if for all 𝑥,𝑦 ∈ (𝑎, 𝑏) and 𝜆 ∈ [0, 1]

𝑓 (𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝜆𝑓 (𝑥) + (1 − 𝜆) 𝑓 (𝑦) .

For example 𝑓 (𝑥) = 𝑥2 is convex on R.

Lemma 7.3. If 𝑓 : (𝑎, 𝑏) → R is differentiable and 𝑓 ′(𝑥) is non-decreasing on (𝑎, 𝑏), then 𝑓 is convex. In particular if
𝑓 ′′(𝑥) > 0, then 𝑓 is convex.

Proof. Omitted. □

Definition 7.4. Let 𝑘 ≥ 1 be an integer. We extend the " 𝑘-th binomial coefficient function" to the real numbers
𝑥 ∈ R as follows: (

𝑥

𝑘

)
=
𝑥 (𝑥 − 1) · · · (𝑥 − 𝑘 + 1)

𝑘! ,

for 𝑥 > 𝑘 − 1 and
(
𝑥
𝑘

)
= 0 for 𝑥 ≤ 𝑘 − 1.

Lemma 7.5. Let 𝑘 ≥ 1 be an integer, then 𝑞𝑘 (𝑥) =
(
𝑥
𝑘

)
is convex on R.

Proof. Omitted. □

One inequality to rule them all...

Theorem 7.6 (Jensen’s Inequality). If 𝜑 : (𝑎, +∞) → R is convex, 𝜆1, . . . , 𝜆𝑛 ∈ [0, 1] satisfy ∑𝑛
𝑖=1 𝜆𝑖 = 1, and

𝑥1, . . . , 𝑥𝑛 ∈ (𝑎, +∞) then

𝜑

(
𝑛∑︁
𝑖=1

𝜆𝑖𝑥𝑖

)
≤

𝑛∑︁
𝑖=1

𝜆𝑖𝜑 (𝑥𝑖) .

Proof. Omitted. □

Corollary 7.7 (Simple Cauchy-Schwarz). If 𝑥1, . . . , 𝑥𝑛 ∈ R, then

1
𝑛

(
𝑛∑︁
𝑖=1

𝑥𝑖

)2
≤

𝑛∑︁
𝑖=1

𝑥2𝑖 .

Proof. Omitted. □

Corollary 7.8 (Binomial Coefficient Convexity). If 𝑥1, . . . , 𝑥𝑛 ∈ R, then(∑𝑛
𝑖=1 𝑥𝑖
𝑘

)
≤ 1
𝑛

𝑛∑︁
𝑖=1

(
𝑥𝑖

𝑘

)
.

Proof. Omitted. □
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